D. Y. Patil College of Engineering, Akurdi Department of Electronics & Telecommunication Academic Year 2024-2025

M.Tech VLSI and Embedded System

Syllabus Copy

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

			Teaching Scheme				Evaluation Scheme					
Course Code	Course					Fva	Theory % Marks			Practical % Marks		
				Р	Cr	m	M a x	Min for Pass		Ma x	Min for Pas s	
VES2400L01	Digital CMOS Design	2	1	0	4	CCA	50	20	40			
VES2409L01	Digital CNIOS Design	3	1	0	4	ESE	50	20	40	-	-	
VES2400L02	Embedded System	3	1	0	4	CCA	50	20	40			
VE32409L02	Design	3		0		ESE	50	20	40	-	-	
VES2400L03	Reconfigurable	3	1	0	4	CCA	50	20	40	-	-	
VE32409L03	Computing	3		0	4	ESE	50	20	40			
VES2400LXX	Program Elective	3	1	0	1	CCA	50	20	40			
VL52+0)LAA	Course 1	5	1	U	-	ESE	50	20	40		_	
VE\$2409P01	Laboratory Drastica L	0	0	4	2	CCA	-	-	-	50	20	
VL52407101	Laboratory Tractice T	0	Ŭ	-	2	ESE	-	-	-	50	20	
RMD24O9L0	Research Methodology	3	0	0	3	CCA	50	20	40	-	-	
1						ESE	50	20	0			
VES2409P02	Research Seminar	0	0	2	1	CCA	-	-		50	20	
						ESE				50	20	
NCC2409L01	Non Credit Course 1	2	0	0	0	CCA	100	4	0	Pass	/Fail	
Total 17 4 6 22												

Syllabus Structure

Program Elective Course 1						
VES2409L04	ASIC Design					
VES2409L05	Nano Technology					
VES2409L06	Processor Design					
VES2409L07	Wireless Sensor Networks					
	Industrial IOT in Embedded					
VES2409L08	system					

Non Credit Course 1						
NCC2409L01	Disaster Management					
NCC2409L02	Value Education					
NCC2409L03	Constitution of India and Indian Knowledge System					
NCC2409L04	Pedagogy Studies					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Core Course 1

	Teaching Scheme					Evaluation Scheme					
					Theory % Marks			Pract Ma	ical % arks		
L	Т	Р	Cr	Exam	Min for			Min			
					Max	Nin for Pass		Max	for Pass		
3	1	0	4	CCA	50	40			1 455		
39	13	0	Total:52	ESE	50	40	40				

Course Code: VES2409L01

Course Title: Digital CMOS Design

Prerequisites:

- 1. Basic understanding of MOSFETs
- 2. Basic fundamentals of integrated circuits.

Course Objectives:

- 1. To learn MOSFET Models and layout fundamentals
- 2. To nurture students understanding in performance parameters of digital CMOS Design
- 3. To understand the advanced trends in CMOS design
- 4. To learn the delay models

Cours	se Outcomes: After successful completion of the course the student will be able to:
CO1	Apply the knowledge of electrical properties, characteristics and capacitance models of MOSFET to design its SPICE Model.
CO2	Design digital logic circuits using CMOS technology and draw and simulate the CMOS layout of digital circuits.
CO3	Analyze various performance parameters of CMOS and estimate the delay of logic networks and its logical efforts in digital CMOS design.
CO4	Design, simulate and synthesize CMOS combinational and sequential circuits HDL codes using FSM and analyze the performance.
CO5	Design low power and high speed circuits with comparative understanding of circuit families and advanced circuits.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: MOSFET Models 8 h						
Basic Elec Voltage V Capacitano Parasitic; T	Basic Electrical Properties of MOS Circuits: Ids-Vds Relationships, MOS Transistor Threshold Voltage Vth, MOS Capacitance models, MOS Gate Capacitance Model, MOS Diffusion Capacitance Model. Non ideal I-V Effects, MOSFET equivalent circuits and analysis, Parasitic; Technology scaling; Lambda parameter; wiring parasitic; SPICE Models						
Unit II	Title: CMOS Layout Techniques 8 hrs						
CMOS lay CMOS P Conventio Process, St	CMOS layout techniques; Transient response. CMOS Technologies: Layout Design Rules CMOS Process Enhancements: Transistors, Interconnect, Circuit Elements, Beyond Conventional CMOS. CMOS Fabrication and Layout: Inverter Cross-section, Fabrication Process, Stick Diagrams.						
Unit III	Title: Performance parameters	8 hrs					
Static, dyn Fan in, fan Logical Ef Delay in M Design Ma	Static, dynamic and short circuit power dissipations, Propagation delay, Power delay product, Fan in, fan out and dependencies. Delay Estimation: RC Delay Models, Linear Delay Model, Logical Effort, Parasitic Delay. Logical Effort and Transistor Sizing: Delay in a Logic Gate, Delay in Multistage Logic Networks, Interconnect: Resistance, Capacitance, Delay, Crosstalk. Design Margin.						
Unit IV	Title: Logic design and FSM Design with issues	8 hrs					
Static CM Gates, Pas Flops, Des and mitiga Concepts of issues and	Static CMOS Logic: Inverter, NAND Gate, Combinational Logic, NOR Gate, Compound Gates, Pass Transistors and Transmission Gates, Tristates, Multiplexers, Latches and Flip- Flops, Design calculations for combinational logic and active area on chip; Hazards, sources and mitigation techniques, Transmission gate, utility and limitations. Concepts of FSMs, Types of FSMs, Basic design approach, HDL codes for FSM, Metastability						
Synthesize	ze using HDL						
Unit V	Title: Advanced tends	7 hrs					
Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Domino logic, NORA logic, Differential Circuits, Sense Amplifier Circuits, BiCMOS Circuits, Low Power Logic Design, Comparison of Circuit Families, Materials for performance improvement, Techniques for Low power, High speed designs.							
Reference Books							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

- 1. Neil Weste and Kamaran, —Principles of CMOS VLSI Designl, Education Asia.
- 2. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits : A Design Perspective, Pearson (Low Price Edition)

3. Charls Roth, —Digital System Design using VHDLI, Tata McGraw Hill.

4. S-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits : Analysis and Design, Third Edition, McGraw-Hill

5. Samir Palnitkar, —Verilog HDL – A Guide to Digital Design and Synthesisl, PHI

Unit I		Title: MOSFET Models						
1. I 2. J 3. J t	Desi Iusti Iusti Ihe N	gn SPICE model of MOSFET and explain the steps in detail. fy significance of non-ideal V-I Characteristics and parameters of MC fy wiring parasitic and device parasitic limitations on speed and band MOSFET circuit.	DSFET. width of					
Unit II		Title: CMOS Layout Techniques	2 hrs					
1. I 2. F	Desi Rela	gn CMOS circuit using layout design rules with any one example. te the CMOS fabrication process and draw the stick Diagram.						
Unit III		Title: Performance parameters	3 hrs					
1. A c 2. H	Anal circu Rela CM(lyze effect of static, dynamic and short circuit power dissipations in th its. te and express significance of Fan-in, Fan-out and power delay p OS circuit designing. What are the ways to improve them?	ne CMOS roduct in					
Unit IV		Title: Logic design and FSM Design with issues	3 hrs					
1. I 2. V r	Desi Wha made	gn CMOS circuit for $Y = AB + CDEF + GH$. Carry out the transistor t is the effect on logic $-1\parallel$ and $-0\parallel$ if Pull-Up and Pull-Down net e up of N and P devices respectively in CMOS logic? Give example.	sizing. works are					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

3. 4.	 Design HDL code for FSM. Explain it in detail with suitable examples. Demonstrate the solution of Metastability issues in FSM designs. 							
Unit V		Title: Advanced trends	2 hrs					
1. 2.	Con Desi	pare circuit families with their performance parameters gn circuit with Cascode Voltage Switch Logic and draw its timing dia	ıgram.					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

	KUDING IOI COMMUUUS EVALUAUUN							
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

Rubrics for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	-	2	1	1
CO3	3	2	2	1	-	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Core Course 2

Course Code: VES2409L02

Course Title: Embedded System Design

Teaching Scheme				Evaluation Scheme					
	Theor				Theory % Marks		Pract Ma	ical % arks	
L	Т	Р	Cr	Exam		Min for			Min
					Max Min for Pass		SS	Max	for Pass
3	1	0	4	CCA	50	40	40		
39	13	0	Total:52	ESE	50	40	40		

Prere	Prerequisites: Basics of Embedded system						
Cours	Course Objectives:						
1. To 2. To 3. To 4. To	 To understand various design issues in embedded systems To learn ARM CORTEX architecture and its programming concepts To learn embedded LINUX operating system To make aware of the significance of embedded network processors 						
Cour	se Outcomes: After successful completion of the course the student will be able to:						
CO1	Appraise knowledge about the basic functions of embedded systems.						
CO2	Design ARM Processor based Embedded Systems.						
CO3	Select CORTEX based controller for suitable application and Interface the advanced peripherals to ARM based microcontrollers.						
CO4	Examine different booting and kernel methods for sustainable embedded system design.						
CO5	Develop Embedded C or C++ programming for embedded system design.						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: Introduction to Embedded Systems	7 hrs					
Introductio Embedded On chip.	Introduction to Embedded Systems: Introduction to Embedded Systems, Architecture of Embedded System, Design Methodology, Design Metrics, General Purpose Processor, System On chip.						
Unit II	Title: Embedded system design and development8 hrs						
Embedded Developme Details and	Embedded system design and development: Embedded system design, Life-Cycle Models, Development tools, Introduction to Development Platform Trends (only introduce IDE, board Details and Application) Arduino, Beagle bone, Rasberry PI, Intel Galileo Gen 2.						
Unit III	Title: ARM CORTEX Processor and ARM-M3 Based Microcontroller	8 hrs					
ARM COF series, Fea manufactu	RTEX series features, Improvement over classical series, CORTEX ARM p atures and applications, Survey of CORTEX based controllers from rers.	rocessors 1 various					
ARM-M3 descriptior Bus Protoc	Based Microcontroller LPC1768: Features, Architecture block diagra , System Control, Clock & Power Control, Pin Connect Block. CMSIS cols Ethernet, CAN, USB, Bluetooth.	ım & its Standard,					
Unit VI	Title: Embedded Linux	8 hrs					
Embedded initializatio constructio drivers, Ke	Linux: System architecture, BIOS versus boot-loader, Booting the kerne on, Space initialization, Boot loaders and Storage considerations. Linu on: Kernel build system, Obtaining a custom Linux kernel, File systems ernel configuration.	sl, Kernel x kernel , Device					
Unit V	Title: Embedded System Design Case Studies	8 hrs					
Embedded System Design Case Studies: Design Case Studies like Automated Meter Reading Systems (AMR), Digital Camera, Certification and documentation: Mechanical Packaging, Testing, reliability and failure analysis, Certification (EMI / RFI) and Documentation. Study of any two real life embedded products in detail.							
References/Reference Books							
 1. www.nx 2. Noergaa 3. Hallina Second Ed 4. Shibu, 1 5. Comer I 	 Keierences/Keierence books 1. www.nxp.com/documents/user, manual/UM10360.pdf. 2. Noergaard Tammy, —Embedded Systems Architecturell, Elsevier Publication. 3. Hallinan Christopher, —Embedded Linux Primer: A Practical Real-World Approachl, Second Edition, Pearson Education. 4. Shibu, I Introduction to Embedded Systems I, TMH. 5. Comer D E, —Network System Design using Network Process. PHI 						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

6. Croeley Patrick, Franklin M. A, Hadimioglu H & Onufryk P Z, Network Processor Design, Issues and Practices, vol-1-2, Elsevier.
7. Uyless Black, Computer Networks-Protocols, Standards Interfaces, Second Edition, PHI.
8. http://www.npforum.org/; http://www.intel.com/design/network/products/npfamily.

Unit I	Fitle: Introduction to Embedded Systems2 hrs						
1. With syste	a neat sketch explain the Embedded Systems Architecture and appem on chip concept.	praise the					
Unit II	Title: Embedded system design and development	2 hrs					
2. Com	pare Arduino, Beagle bone, Raspberry PI and Intel Galileo Gen 2.						
Unit III	Title: ARM CORTEX Processor and ARM-M3 Based Microcontroller	3 hrs					
 Conman With desc 	duct Extensive Survey of CORTEX based controllers fror ufacturers. neat sketch explain LPC1768: Features, Architecture block diagra ription.	n various am & its					
Unit IV	Title: Embedded Linux	3 hrs					
5. Exan desig	nine different booting and kernel methods for sustainable embedde	ed system					
Unit V	Title: Embedded System Design Case Studies	3 hrs					
6. Design C (AMR), I	ase Study on Embedded system like Automated Meter Reading Syste Digital Camera.	ems,					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	-	2	1	1
CO3	3	2	2	1	-	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Core Course 3

Course Code: VES2409L03

Course Title: Reconfigurable Computing

		Evaluat	tion S	chen	ne					
					Theory	% Ma	irks	Pract Ma	ical % arks	
L	Т	Р	Cr	Exam	Min for		1 Min for			Min
					Max	Pa	SS	Max	for Pass	
3	1	0	4	CCA	50	40	10		1 465	
39	13	0	Total:52	ESE	50	40	40			

Prerequisites: Basics of VLSI design Flow, Basics of FPGA

Course Objectives:

1. To understand various computing architectures

2. To provide students the concept of handling issues of reconfigure computing

3. To provide students implementation approaches of FPGA design in view of reconfiguration

4. To outline various applications reconfigure computing

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Compare and contrast the reconfigurable computing and its integration on computing platforms with general purpose, domain specific and application specific processors.
CO2	Explore and apply different building blocks for RC Architectures.
CO3	Analyze various systems of Reconfigurable computing and recognize their issues.
CO4	Analyze and apply various reconfiguration management aspects.
CO5	Design, implement and analyze reconfigurable systems in the recent application domains using HDL

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: Domain of RC	7 hrs				
General ov Computing Computing	General overview of computing models, Basic RC concepts, Domain of RC: General Purpose Computing, Domain-Specific Processors, Application-Specific Processors, Reconfigurable Computing, Fields of Application.					
Unit II	Title: RC Architectures	8 hrs				
Architectu Architectu Systems.	Architecture of Field Programmable Gate Arrays, Reconfigurable Processing Fabric (RPF) Architectures: Fine grained, Coarse-Grained, Integration of RPF into Traditional Computing Systems.					
Unit III	Title: Systems of Reconfigurable Computing	8 hrs				
Early syste SRC, non-	ems of Reconfigurable computing: PAM, VCC, Splash, PRISM, Tera mac, FPGA research, challenges or post synthesis issues in systems of RC.	Cray,				
Unit IV	Title: Reconfiguration Management	8 hrs				
Reconfigur reconfigur	ration Management: Reconfiguration, Configuration architectures, managi ation process, reducing reconfiguration time, configuration security.	ng				
Unit V	Title: Implementation of RC with Applications	8 hrs				
Implement Introductio Approache	cation: Integration, FPGA Design Flow, System On A Programmation to SoPC, Adaptive Multiprocessing on Chip. Reconfiguration Projectes: J-Bit, Modular, Early Access, Vivado.	ole Chip: xt Design				
RC Applications (any three): Implementing applications with FPGAs, various applications and use of reconfiguration: Video Streaming, Distributed arithmetic, Adaptive Controller, Adaptive cryptographic systems, Software Defined Radio, High-Performance Computing, Automatic target recognition systems.						
Reference	Books					
1 Bobda C and Applic 2 Hauck S Based Cor	hristophe, —Introduction to Reconfigurable Computing: Architectures, Alg cations ^{II} , Springer. cott, Dehon A, —Reconfigurable Computing: The Theory and Practice of nputation ^{II} , Elsevier.	gorithms, FPGA-				

3 Vivado Partial Reconfiguration.pdf: user guide 909 by Xilinx Revision: 04/06/2016.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Unit I		Title: Domain of RC						
1. 2. 3.	State Expl Com Proc	e and explain reconfigurable device characteristics lain flow of program execution for Von Neumann computer architectu apare & contrast between General Purpose Processors, Domain-Sp ressors, Application-Specific Processors,	ıre. ecific					
Unit II		Title: RC Architectures	2 hrs					
1. 2.	Elab Con	orate Garp's non-symmetrical RPF as fine-grained architecture apare Fine grained & Coarse-Grained fabrics in FPGA.						
Unit III	[Title: Systems of Reconfigurable computing	2 hrs					
1. 2.	Expl Ana Reco	ain PAM as Reconfigurable computing with example lyze different research challenges in the design and development of onfigurable devices?						
Unit IV	T	Title: Reconfiguration Management	3 hrs					
1. 2. 3.	Com arch Elal Wha	npare & contrast between Programmable, configurable & reconfigu itectures porate on Relocation and Defragmentation form RC point of view it is Rent Rule? Explain its importance.	ırable					
Unit V		Title: Implementation of RC with applications	3 hrs					
1. 2. 3. 4.	Elab Prog Expl Drav com Elab	borate with help of diagram the transfer of System from PCB to System from PCB to System and the chip. It is a seconfiguration Project Design Approach. We the architecture of adaptive controller ad explain it for control of plex Mechatronics system.	System on f					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	-	2	1	1
CO3	3	2	2	1	-	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Elective Course 1

Course Code: VES2409L04

Course Title: ASIC Design

		Evaluat	tion S	chen	ıe				
					Theory	% Ma	rks	Pract Ma	ical % arks
L	Т	Р	Cr	Exam		Min for			Min
					Max	Pa	SS	Max	for Pass
3	1	0	4	CCA	50	40	10		1 455
39	13	0	Total:52	ESE	50	40	40		

Prerequisites: Basics of FPGA, CPLD and ASIC

Course Objectives:

1. To gain knowledge of the process of designing application specific algorithm for ASIC

2. To synthesize designs in EDA tool environment

3. To learn design methodologies, simulation and verification

4. To learn issues in Mixed signal ASIC design

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Analyze the concepts and techniques of ASIC modeling.
CO2	Make use of EDA tool for ASIC Simulation and Synthesis of HDL based logic Design.
CO3	Interpret the algorithms used for ASIC design.
CO4	Evaluate ASIC static timing analysis, delay estimation and synchronization.
CO5	Construct ASIC verification and testing techniques.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: ASIC Modeling	7 hrs				
ASIC Mod Flow, Pro Programm	ASIC Modeling: IC Design Technologies, Types of ASIC and Comparisons, ASIC Design Flow, Programmable ASICs - Antifuse, SRAM, EPROM, EEPROM based ASICs. Programmable ASIC logic cells, I/O cells and programmable interconnects					
Unit II	Title: ASIC Simulation and Synthesis	8 hrs				
Logic Synt logic level	Logic Synthesis, Simulation, EDA Tools, HDL Based logic Design and Test bench, library, logic level optimization.					
Unit III	Title: ASIC Physical Design	8 hrs				
ASIC Phys Physical D Partitionin Algorithm	ASIC Physical Design: System Specifications, Architecture Design, Logic and Circuit Design, Physical Design, CAD Tools, System partitioning, Estimating ASIC Size, Power Dissipation, Partitioning Strategies, Floor planning, Area-Routing Algorithms, Placement and Routing Algorithms, Design Reuse.					
Unit IV	Title: ASIC Timing Analysis	8 hrs				
ASIC Tim optimizatio issues.	ing Analysis: Static timing analysis, Timing constraints, false path detection on, ASIC library design, Delay estimation, mixed mode design and simu	1, Timing lation, SI				
Unit V	Title: ASIC Verification and Testing	8 hrs				
ASIC Verification and Testing: Different Chip Test Methods, Fault Models, Scan Test, Partial Test, Digital scan standards, BIST architecture, Memory Testing, BILBO, Boundary Scan, Self Test, JTAG, ATPG, Mixed Signal ASIC Design						
Reference Books						
 1 Smith Michael, —Application Specific Integrated Circuits Pearson Education. 2 Soin R S, Maloberti F, Franca J, —Analogue-digital ASICs: circuit techniques, design tools and applications I, IEE Publications. 3 Singh Raminderpal, —Signal Integrity Effects in Custom IC and ASIC Designs Wiley Publications. 						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Unit I	Title: ASIC Modeling						
 Classify C Compare 	Sate Array based ASICs, State types of Masked Gate Array (MGA) A different programmable ASIC technologies.	SICs.					
Unit II	Title: ASIC Simulation and Synthesis	3 hrs					
1. Elaborate 2. Analyze l	VHDL code and test-bench code for D-flip-flop, 4-bit shift register. ogic level optimization.						
Unit III	Title: ASIC Physical Design	2 hrs					
 Demonstri Elaborate ASIC. Different and detailed 	rate CAD tools used in ASIC Design with features. in brief system partitioning, floor planning and routing Algorithms/t iate floorplanning and placement in ASIC design. Differentiate globa routing.	echniques l routing					
Unit IV	Title: ASIC Timing Analysis	3 hrs					
1. Identify o 2. Demonst application	Title: ASIC Timing Analysis ne example to describe time optimization technique. trate delays in ASIC Design. How false path detection is carried out i specific integrated circuits.	3 hrs					
Unit IV 1. Identify o 2. Demonst application s Unit V	 Title: ASIC Timing Analysis one example to describe time optimization technique. trate delays in ASIC Design. How false path detection is carried out i specific integrated circuits. Title: ASIC Verification and Testing 	3 hrs n 3 hrs					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	-	2	1	1
CO3	3	2	2	1	-	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Elective Course 1

Course Code: VES2409L05

Course Title: Nanotechnology

Teaching Scheme					Evaluat	tion S	chen	ıe				
					Theory	% Ma	rks	Pract Ma	ical % urks			
L	Т	Р	Cr	Exam	M		Min for		Min			
					Max	Min for Pass		Pass		Pass	Max	for
									Pass			
3	1	0	4	CCA	50	40	40					
39	13	0	Total:52	ESE	50	40	40					

Prerequisites: Basics of CMOS, BiCMOS technology, FinFET technology

Course Objectives:

1. To get familiar with fundamental science behind Nanotechnology and systems

2. To acquire basic understanding of material science for designing NEMS based systems

3. To understand the principle of biomaterial and their applications to Bio-medical systems

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Use quantum mechanics & quantum ideas to describe nano-structures and sensors.
CO2	Choose suitable material based on the properties for Nanotechnology to learn techniques of nano-structures like CNT, nano wires.
CO3	Discuss the nano-fabrication using Stamping Techniques for various applications like for Solar cell structures and Gain knowledge of designing and developing NEMS based systems.
CO4	Interpret visualization and measurement of nanostructures using Nanostructure devices
CO5	Characterize the principle and working of Nanolithography and it's Biomedical applications.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: Introduction to Nanotechnology	7 hrs				
The fundar mechanics heterogene electromag	nental science behind nanotechnology, bio systems, molecular recognition, & quantum ideas, optics. Smart materials & Sensors, self-healing s cous nano-structures & composites, encapsulations, natural nano-scale gnetic sensors, biosensors, electronic noses.	quantum tructures, sensors,				
Unit II	Title: Nanostructures	8 hrs				
Nanostruct Based Dev	tures, Micro/Nano-devices, nano-materials Synthesis and Applications, Mo ices- Introduction to Carbon nanotubes nano-wires	olecule-				
Unit III	Title: Micro/Nanofabrication and MEMS/NEMS	8 hrs				
Introductio	on to Micro/Nanofabrication- Stamping Techniques. Methods and Applicat	ions.				
Materials A and Applic	Aspects of Micro- and Nano Electromechanical Systems- MEMS/NEMS, eations.	Devices				
Unit IV	Title: Nanostructure Devices	8 hrs				
Nanostruct transfer de	ture devices –Resonant tunneling diodes, Field-effect transistors, Single-el vices. Scanning Probe Microscopy, Noncontact Atomic Force Microscopy	ectrode '.				
Unit V	Title: Nanolithography and Applications	8 hrs				
Low Ten Nanolithog application	Low Temperature Scanning Probe Microscopy, Dynamic Force Microscopy Nanolithography, Lithography using photons, electron beams, soft lithography. Biomedical applications.					
Reference	Books					
 Springer Handbook of Nanotechnology RattnerMark ,Rattner Daniel, —Nanotechnology: A Gentle Introduction to the Next Big Ideal Kulkarni Sulabha K, — Nanotechnology :Principles& Practicesl, Capital Publications VlaimirMitin, — Introduction to nanoelectronics science, Nanotechnology, Engineering and Applicationsl, Cambridge University Press 						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Unit I	Title: Introduction to Nanotechnology					
1. Discuss t	he rationale behind the evolution of Nanotechnology.					
Unit II	Title: Nanostructures	2 hrs				
1. Explain v	arious characteristics of carbon nanotubes and their applications in de	etail.				
Unit III	Title: Micro/Nanofabrication and MEMS/NEMS	3 hrs				
 Develop Elaborat andA 	Stamping Techniques Methods and Applications. The Micro- and Nano Electromechanical Systems- MEMS pplications.	NEMS				
Unit IV	Title: Nanostructure Devices	3 hrs				
1. Analyze t electrode tra	he recent trends in Resonant tunneling diodes, Field-effect transistors	s, Single-				
Unit V	Title: Nanolithography and Applications	2 hrs				
1. Compare Microscopy	Low Temperature Scanning Probe Microscopy with Dynamic Force.	2				

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	1	2	1	1
CO3	3	3	2	2	-	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Elective Course 1

Course Code: VES2409L06

Course Title: Processor Design

	Teaching		Evaluat	tion S	chen	ıe				
					Theory	% Ma	rks	Pract Ma	ical % arks	
L	Т	Р	Cr	Exam		Min for			Min	
					Max Min for Pass		Max Pass		Max	for
							-		Pass	
3	1	0	4	CCA	50	40	40			
39	13	0	Total:52	ESE	50	40	40			

Prerequisites: Computer Fundamentals, Microprocessor, VLSI Design and Technology

Course Objectives:

- 1. To learn architecture fundamentals of processor design
- 2. To understand memory management of CISC and RISC processors

3. To gain knowledge of architecture and design issues in DSP

4. To update the information with respect to run time reconfigurable processors

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Apply knowledge to Visualize probable Problems, fallacies and Pitfalls in Processor Design.
CO2	Make use of intermediate ISAs to allow a simple machine to emulate better pipelining approach.
CO3	Design and Understand Extreme CISC and RISC, Very Long Instruction Word (VLIW), overly aggressive pipelining, unbalanced processor.
CO4	Analyze and Learn DSP processor and customizable processor for SoC design.
CO5	Design and Relate the run time performance parameters in reconfigurable processors for IC design and Gain skills to design and develop Asynchronous Processor design.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: Embedded Computer Architecture	7 hrs				
Embedded Computer Architecture Part-I: Components of an embedded computer, Architecture organization, ways of parallelism, I/O operations and peripherals. Problems, Fallacies, and Pitfalls in Processor Design for a high level computer instruction set architecture to support a specific language or language domain.						
Unit II	Title: Instruction Set Architecture	8 hrs				
Use of inte overly agg power-of-2	Use of intermediate ISAs to allow a simple machine to emulate its betters, stack machines, overly aggressive pipelining, unbalanced processor design, Omitting pipeline interlocks,Non-power-of-2 data-word widths for general-purpose computing.					
Unit III	Title: Memory and Processor Design Flow	8 hrs				
Memory: Organization, Memory mapping and segmentation, Multithreading, Symmetric multiprocessing. Processor Design Flow: Capturing requirements, Instruction coding, Exploration of architecture organizations, hardware and software development. Extreme CISC and extreme RISC, Very long instruction word (VLIW).						
Unit IV	Title: Digital Signal Processor and Customizable processors	8 hrs				
Digital Sig of DSP, processor cores in SC	Digital Signal Processor: Digital signal processor and its design issues, evolving architecture of DSP, next generation DSP. Customizable processors: Customizable processors and processor customization, A benefit analysis of processor customization, use of microprocessor cores in SOC design, benefits of microprocessor extensibility.					
Unit V	Title: Run time Reconfigurable and Asynchronous Processors	8 hrs				
Run time Reconfigurable Processors: Run time Reconfigurable Processors, embedded microprocessor trends, instruction set metamorphosis; reconfigurable computing, run-time reconfigurable instruction set processors, coarse grain reconfigurable processors. Processor Clock Generation and Distribution: Clock parameters and trends, Clock distribution networks, de-skew circuits, jitter reduction techniques, low power clock distribution, need of Asynchronous Processor Design and development						
References/Reference Books						
 Nurmi Jari, —Processor Design-System on Chip Computing for ASIC"s and FPGAI, Springer Publications. Frantz G, —The DSP and Its Impact on Technology. 						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

- 3 Leibson S, Tensilica, —Customizable Processors and Processor Customization.
- 4 Campi F, —Run-Time Reconfigurable Processors.
- 5 Garside J, Furber S, —Asynchronous and Self-Timed Processor Design.
- 6 Rusu S, —Processor Clock Generation and Distribution.
- 7 Dehon Andre, —Reconfigurable Architecture for General purpose Computing.

Unit I	tle: Embedded Computer Architecture 2 hrs						
1. Design ar example.	nd relate Embedded Computer Architecture and explain with one	real time					
2. Design Pi support a spe	itfalls in Processor for a high level computer instruction set architecific language.	ecture to					
Unit II	Title: Instruction Set Architecture 3 hrs						
 Design processor for aggressive pipelining and relate it with general purpose computing. Relate use of ISA in a simple machine with one example. 							
Unit III	Title: Memory and Processor Design Flow	2 hrs					
 Relate pro example Relate and 	1. Relate processor with memory segmentation, multithreading and design rules with example						
VLIW							
Unit IV	Unit IVTitle: Digital Signal Processor and Customizable processors3 hrs						
1. Demonstra	ate design issues of Digital Signal Processor with any one example.						
2. Analyze a	nd relate processor customization and its use.						

.

.

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Unit V	Title: Run time Reconfigurable and Asynchronous Processors					
1. Design and create clock generation and distribution systems and demonstrate.						
2. Evaluate and relate run time reconfigurable processors give examples.						
3. Case study and detailed explanation of Asynchronous Processor and its applications.						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	2
CO2	3	-	-	2	1	1
CO3	3	2	2	2	-	-
CO4	3	2	2	3	2	1
CO5	3	2	1	2	1	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Elective Course 1

Course Code: VES2409L07 Course Title: Wireless Sensor Networks

		Evaluat	tion S	chen	ne				
		Theory % Marks			Practical % Marks				
L	Т	Р	Cr	Exam	Max	Min Pa	for ss	Max	Min for Pass
3	1	0	4	CCA	50	40	40		
39	13	0	Total:52	ESE	50	40	40		

Prerequisites: Basic concepts of Wireless Sensor Networks

Course Objectives:

1. To understand basic WSN Technology and its supporting Protocols

2. To learn routing protocols and their design issues in WSN

3. To understand sensor- management, sensor- network middleware and operating systems

4. To understand WSN layers' issues and their protocols

Cours	Course Outcomes: After successful completion of the course the student will be able to:					
CO1	Analyze various types of WSN network and its Challenges and Constraints					
CO2	Examine the various types of WSN node architectures					
CO3	Judge different techniques of power management					
CO4	Analyze various attacks of Network security and it's protocol mechanism with standards and routing techniques					
CO5	Exhibit the knowledge of operating systems in WSN systems					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	Title: Introduction to WSN	7 hrs				
Introduction: Motivation for a Network of Wireless Sensor Nodes, Sensing and Sensors Wireless Networks, Challenges and Constraints. Applications to: Health care, Agriculture, Traffic and others.						
Unit II	Title: WSN Architectures	8 hrs				
Architectures: Node Architecture; the sensing subsystem, processor subsystem, communication interface, LMote, XYZ, Hogthrob node architectures.						
Unit III	Title: WSN performance parameter Management	8 hrs				
Power Management - Through local power, processor, communication subsystems and other means, time Synchronization needs, challenges and solutions overview for ranging techniques.						
Unit IV	Title: WSN security aspects and Protocols	8 hrs				
Security Fundamentals, challenges and attacks of Network Security, protocol mechanisms for security. Physical Layer- Basic Components, Source Encoding, Channel Encoding, Modulation, Signal Propagation. Medium Access Control –types, protocols, standards and characteristics, challenges Network Layer -Routing Metrics, different routing techniques.						
Unit V	Title: Operating Systems	8 hrs				
Operating Systems -Functional and nonfunctional Aspects, short overview of prototypes– Tiny OS, SOS, Contiki, LiteOS, Sensor grid.						
Reference Books						
 Dargie W., Poellabauer C., "Fundamentals of wireless sensor networks: theory and practice", John Wiley and Sons Sohraby K., Minol, D., Znati T., "Wireless sensor networks: technology, protocols, and applications", John Wiley and Sons Hart J. K., Martinez K., —Environmental Sensor Networks: A revolution in the earth system science", Earth-Science Reviews. Feng Zhao, Leonidas J.Guibas,—Wireless Sensor Networks: An Information Processing Approach". 						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Unit I	Title: Introduction to WSN	2	hrs				
1. Analyz the same.	e various types of WSN network and discuss the Challenges and Constr	aints	for				
Unit II	nit II Title: WSN Architectures						
1. Examine the various types of WSN node architectures and explain in detail sensing subsystem, processor subsystem, communication interface.							
Unit III	Title: WSN performance parameter Management						
1. Identif solutions	1. Identify various power management techniques and also explain challenges and solutions overview for ranging techniques.						
Unit IV	Title: WSN security aspects and Protocols	3	hrs				
 Elaborate the challenges and attacks of Network Security and also discuss in detail thechallenges and solutions overview for ranging techniques. Analyze the physical and Network layer in detail. 							
Unit V	Title: Operating Systems						
1. Examinand nonfu	ne the different operating systems in WSN systems and comment on Fu unctional Aspects of OS.	nctio	onal				

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	3	2	1	2
CO2	3	-	-	2	1	1
CO3	3	2	2	2	-	-
CO4	3	2	2	3	2	1
CO5	3	2	1	2	1	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Elective Course 1

Course Code: VES2409L08 Course Title: Industrial IOT in Embedded system

Course	Couc.	VL02407LU

Teaching Scheme				Evaluation Scheme					
L	Т	Р	Cr	Exam	Theory % Marks			Practical % Marks	
					Max	Min for			Min
						Pa	SS	Max	for Pass
3	1	0	4	CCA	50	40	40		
39	13	0	Total:52	ESE	50	40	40		

Prerequisites: Basics of IoT

Course Objectives:

1. To understand fundamentals of IoT and embedded systems including essence, basic design strategy and process modeling.

2. To introduce students to a set of advanced topics in embedded IoT and lead them to understand research in networks.

3. To develop a comprehensive approach towards building small low cost embedded IoT systems.

4. To understand fundamentals of security in IoT.

5. To learn to implement secure infrastructure for IoT.

6. To learn real world application scenarios of IoT along with its societal and economic impact using case studies

Course Outcomes: After successful completion of the course the student will be able to:			
CO1	Analyze IoT in Embedded system and justify various things of IoT, issues and challenges in it.		
CO2	Design and Implement an architecture of IoT for specified requirement		
CO3	Analyze various IoT protocols and it's standards and Evaluate various IoT security aspects and its challenges.		
CO4	Relate and Solve the given societal challenge using IoT case studies.		
CO5	Choose and apply between available technologies and devices for stated IoT challenge		

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Syllabus

Unit I	t I Title: Introduction to IoT in Embedded System			
Introduction to Embedded System and Internet of Things o Embedded Systems, IoT: Definition and characteristics of IoT, Internet of Things: Vision, Emerging Trends, Economic Significance, Technical Building Blocks, Physical design of IoT, Things of IoT, IoT Protocols, IoT Issues and Challenges, Applications				
Unit II	Title: Embedded IoT Platform	8 hrs		
Embedded IoT Platform Design Methodology Purpose and requirement specification, Process specification, Domain model specification, information model specification, Service specifications, IoT level specification, Functional view specification, Operational view specification, Device and component integration, Application development				
Unit III	Title: IoT Protocols and security	8 hrs		
IoT Protocols: Protocol Standardization for IoT, M2M and WSN Protocols, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards, Protocols – IEEE 802.15.4, BACNet Protocol, Modbus, KNX, Zigbee Architecture, Network layer, APS layer. IoT Security: Vulnerabilities of IoT, Security Requirements, Challenges for Secure IoT, Threat Modeling, Key elements of IoT Security: Identity establishment, Access control, Data and message security, Non-repudiation and availability, Security model for IoT				
Unit IV	Title: IoT Case Studies	8 hrs		
IoT Physical Servers, Cloud Offerings and IoT Case Studies: Introduction to Cloud Storage Models, Communication API, WAMP: Autobahn for IoT				
Unit V	Title: IoT Case Studies based on Cloud and Web technology	8 hrs		
Xively Cloud for IoT, Python Web Application Framework: Django, Amazon Web Services for IoT, Skynet IoT Messaging Platform. Case Studies: Home Intrusion Detection, Weather Monitoring System, Air Pollution Monitoring, Smart Irrigation				
Text Books				
 HakimaChaouchi, — The Internet of Things Connecting Objects to the WebIISBN : 978- 1-84821-140-7, Wiley Publications Olivier Hersent, David Boswarthick, and Omar Elloumi, —The Internet of Things: Key 				

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Reference Books

 Vijay Madisetti, Arshdeep Bahga, —Internet of Things: A Hands-On Approach
 Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"
 Daniel Minoli, —Building the Internet of Things with IPv6 and MIPv6: The Evolving

World of M2M Communications^{||}, ISBN: 978-1-118-47347-4, Wiley Publications

4. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

Unit I	it I Title: Introduction to IoT in Embedded System			
 Design Embedded system using Industrial IoT Relate various industrial IoT issues and challenges for various applications. 				
Unit II	Title: Embedded IoT Platform	2 hrs		
1. Des 2. Expl exar	ign and analyze Embedded IoT platform for specific requirements. lore functional view, operational view of Embedded IoT platform nple	with one		
Unit III Title: IoT Protocols and security		3 hrs		
 Relate and express significance of various IoT protocols. Demonstrate M2M and WSN protocols with any real time example. Design IoT security System by considering various challenges in security requirements of IoT systems. Demonstrate any security model for Industrial IoT. 				
Unit IV	Title: IoT Case Studies			
1. Case	studies of IoT physical servers, cloud offerings.			

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

2. Analysis and presentation of Case studies of Cloud storage model and WAMP: Autobahn for IoT.

Unit V	Title: IoT Case Studies based on Cloud and Web Technology	3 hrs
1. Deta	led Advance Case study for various applications of Industrial IoT.	

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	1			<u> </u>		1
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	2
CO2	3	-	-	2	1	1
CO3	3	2	2	2	-	-
CO4	3	2	2	3	2	1
CO5	3	2	1	2	1	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Category: Program Core Laboratory

Course Code: VES2409P01

Course Title: Laboratory Practice I

Teaching Scheme					Evalua	tion Sch	neme			
					Theory % Marks		Practical % Marks		%	
L	Т	Р	Cr	Exam	Max	Min for Pass	Max	Mi for l	Min for Pass	
0	0	4	2	CCA			50	20	40	
0	0	52	Total: 52	ESE			50	20	40	

Prerequisites:

1. Front End Tools and Back End Tools basics

2. C Language basics and Interfacing basics

Course Objectives:

- 1. To understand the significance of CMOS design in VLSI
- 2. To learn Hardware and Software design tools
- 3. To design Embedded Systems for real time application
- 4. To learn ARM 7 architecture and its programming concepts

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Design digital logic circuits using CMOS technology.
CO2	Interface the advanced peripherals to ARM based microcontrollers.
CO3	Design and analyze various performance parameters of circuits with HDL code, Embedded programming in C and Keil etc. usingfront end tool and draw layout of digital/analog circuits using back end tool.
CO4	Apply DRC's of appropriate foundry, draw the layout and simulate different digital/analog circuits using backend tool like Microwind, Mentorgraphics, Cadence etc.
CO5	Implement, design and simulate various nanostructures, processors internal functional blocks like CPU and Embedded system on PLD or IoT platform.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

	Syllabus	
	Introduction	06 hrs
Laborator	y Practice I (LP I) is companion course of theory courses (core and e	lective) in
Semester	I. It is recommended that set of assignments or at least one study project pe	er course is
to be com	ppleted. Set of problem statements are suggested. Course/ Laboratory insta	ructor may
frame sui	itable problem statements. Student has to submit a report/Journal con	nsisting of
appropria	te documents -prologue, Certificate, table of contents, and other suitable wa	rite up like
(Introduct	tion, motivation, aim and objectives, outcomes, brief theory, requirement	s analysis,
design as conclusion	pects, algorithms, mathematical model, complexity analysis, results, an ns).	alysis and
	Guidelines for CCA	05 hrs
Continuou	us assessment of laboratory work is done based on performance of student.	
Each assig	gnment/ mini project assessment is to be done based on parameters with a	ppropriate
weightage	e. Suggested parameters for overall assessment as well as mini project	assessment
include-ti	mely completion, performance, innovation, efficient codes, usability, docu	umentation
and adher	ing to SDLC comprehensively	
	Guidelines for ESE	05 hrs
It is recon one of the	nmended that examination should be conducted as presentation by student be mini projects completed and the content understanding of laboratory work.	ased on
	Lab practice file shall consist of following assignments/experime	nts
1. Total 2. Total: Detailed	experiments to be conducted are two from each Part: Part A to Part D : 08 experiments Syllabus:	
	Part A: Digital CMOS Design	9 hrs
Expt. No.	Title	
1.	To design, prepare layout and simulate CMOS Inverter for the given speci of load capacitance, propagation delay, power dissipation, foundry etc.	fications
2.	To design CMOS logic for $F = A + B (C + D) + EFG$ and prepare layout. suitable capacitive load & foundry. Measure TR, TF & TPD.	Assume
3.	To draw FSM diagrams, write HDL code, synthesize, simulate, place & r Tea/Coffee vending machine. Generalized I/Os of the machine are coin s sense, option sense, pour valve, timer count, alarm etc. You may assume I/Os too.	oute for a sense, cup additional
4.	Design and simulate adder/multiplexer/decoders using CMOS and Tran Gate.	smission
Part B:	Embedded System Design	9 hrs
1.	Write a program for 4*4 Matrix Keypad Interface.	
2.	Interfacing EEPROM to LPC2148 using I2C protocol	

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

3.	Interfacing USB & CAN of LPC 1768.					
4.	One experiment based on any one development Platform: Arduino, Beaglebone, Raspberry Pi, Intel Galileo Gen 2.					
Part C:	Part C: Reconfigurable Computing 9 hrs					
1.	Execute the Xilinx ISE tool design flow and verify for various modeling VHDL with suitable examples on FPGA.	styles of				
2.	To design and implement a Multi Context (4) 4-LUT and implement us and download on FPGA.	ing HDL				

3.	Implement top level modular and hierarchical designs of Adder and Subtractor such that they can be replaced.						
4.	Implement an adaptive design of LED shifter (Right & Left shift)						
Part D:	Program Elective course experiments	9 hrs					
ASIC D	esign						
1.	Write HDL code to simulate, synthesis, place & route FIFO on PLD. Che and also write the test bench.	eck results					
2.	Draw CMOS layout & simulate shift register by applying DRC's of appropriate foundry using backend tool and check the output						
3.	Draw CMOS layout & simulate 16:1 MUX by applying DRC's of appropriate foundry using backend tool and check the output.						
4.	Simulate Stuck at fault model of given function.						
Nano Te	echnology						
1.	Introduction of analysis and characterization of Nano structured materials and thin film sensors.	s, coating					
2.	Surface tension measurement of Nano fluids.						
3.	To observe size and slope of the Nano sized sample using scanning electronic microscopy.	on					
4.	Design, simulation and analysis of Nano structures.						
Processo	or Design						
1.	Design and implement MAC module on PLD						
2.	Design and implement CPU on PLD						
3.	Design and implement Carry look-ahead generator on PLD						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

4.	Design and implementation of Translation look-aside buffer.					
Wireless Sensor Networks						
1.	Reading data from Sensor node.					
2.	Implement 50 stationary nodes topology using NS2 for data transmission and record QoS parameters of the Networks/ Test bed.					
3.	Implement 50 dynamic nodes topology using NS2 for data transmission and record					

	QoS parameters of the Networks /Test bed.					
4.	On any above topology change the Network layer/Transport layer/MAC layer protocol and monitor the changes between any two protocols/ test bed using Network Simulator.					
Industri	Industrial IOT in Embedded system					
1.	Weather forecasting system using any cloud applications and IoT hardware platforms.					
2.	Smart Agriculture irrigation System.					
3.	Motion detection-based Intrusion detection and alert system.					
4.	Smart Air pollution monitoring system.					

Rubrics for Continuous Evaluation

Component	Level	Laboratory Practice -I	Total	Passing	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	 Design with Advanced Engineering Materials Mechanism Analysis and 	50	20	Refer CCA Guideline
ESE	Institute	Synthesis 3. Advanced Mechanics of Solids	50	20	External Oral Exam

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	1	1
CO2	3	2	2	2	1	1
CO3	3	2	2	2	1	1
CO4	2	1	1	1	1	1
CO5	3	1	1	2	1	1

CO-PO Mapping

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Category: Research Course

Course Code: RMD24O9L01

Course Title: Research Methodology

	Teaching	g Scheme		Evaluation Scheme					
					Theory % Marks			Practical % Marks	
L	Т	Р	Cr	Exam	Min for	for	Min		
					Max	Pass		Max	for Pass
3	0	0	3	CCA	50	40			1 455
3	0	0	5	ECH	50	10	40		
39	0	0	Total: 39	ESE	50	40			

Prerequisites: Basic understanding of statistics like central tendency, dispersions, Basic computing skills likes Microsoft Excel, Data analysis, critical thinking skills like reasoning etc

Course Objectives: Purposes of Course are:

- 1. To Provide a comprehensive understanding of research methods, techniques, and their applications in engineering and technology.
- 2. To Enable students to critically analyze and synthesize literature relevant to their research field.
- 3. To Equip students with the skills to design and conduct scientific research effectively using appropriate methodologies.
- 4. To Instill ethical standards, promoting integrity accountability and responsibilities in conducting and reporting research

Course Outcomes: After Successful completion of course units, students will

- CO1 Effectively apply research processes and methodologies relevant to engineering research, facilitating the foundation of research activities, while developing the ability to conduct a thorough literature review to critically assess existing work and identify gaps for contributing to innovative research.
- CO2 Design and execute a research study using quantitative and qualitative research methods to yield reliable and valid data ensuring robustness of research findings
 CO3 Analyze data using statistical tools and software, interpreting results accurately to make
- informed decisions based on research results
- CO4 Author research findings and present in both written and oral formats effectively to both scientific and lay audiences
- CO5 Appraise the ethical standards of research, acknowledging the work of others appropriately and reporting results truthfully

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

	Syllabus								
Unit I	Basics of Research & Literature Review Techniques	10hrs							
Definition engineerin Scientific managing	of research, research methodology, concepts and significance of re- ing, research ethics and responsibilities, case studies and real-life examples, so literature, Methods for conducting and organizing literature reviews, references and citations like Mendeley, case studies and real-life examples	esearch in Sources of Tools for							
Unit II	Research Design	08hrs							
Types of sampling studies and	Types of research design: Experimental, Correlational, Survey and Case Study, variables, sampling methods and techniques, formulating experimental and observational strategies, case studies and real-life examples Unit III Data Collection and Analysis								
Unit III	Data Collection and Analysis	07hrs							
Techniques for collecting primary and secondary data, quantitative analysis, descriptive and inferential statistics, qualitative analysis, content and thematic analysis, case studies and real-life examples									
Unit IV	Statistical Tools and Software in Research	08hrs							
Usage of interpretat case studie	Usage of Statistical software's like Minitab, MATLAB/Scilab in data analysis and interpretations, visualizing data and presenting statistical results in graphical, numerical format, case studies and real-life examples								
Unit V	Research Reporting and Presentation	06 hrs							
Structure a Skills for o	and components of research reports and papers, Ethical considerations in prefective research presentation, case studies and real-life examples	ublishing,							
Tutorials									
All activit	ies should be published in LinkedIn or YouTube and record responses.								
1) Write a	brief essay on the importance of research in their field of engineering								
2) Create	a flowchart of the research process for a hypothetical study								
3) Group of	discussion on recent engineering innovations driven by research								
4) Analyze	e a case study on ethical dilemmas in research and propose solutions.								
5) Create	a literature review by using Mendeley as per APA citations and references								
6) Choose	a research question and propose a suitable research design								
7) Outline	experimental protocol for given research question								
8) Analyze	e a dataset using Minitab/Scilab/MATLAB and interpret the results								
9) Prepare	a check sheet for selection of type of graphs and its effectiveness								
10) Review	w and critique a research paper for ethical compliance								

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

References:

- 1. Kothari, C. R. (2019). Research methodology: Methods and techniques. New Age International.
- 2. Kumar, R. (2019). Research methodology: A step by step guide for beginners. Sage Publications.
- 3. Kothari, C. R., & Garg, G. (2019). Research methodology: Methods and techniques. New Age International.
- 4. Chawla, D., & Sondhi, N. (2021). Research methodology: Concepts and cases. Vikas Publishing House.
- 5. Prasad, R. K. (2020). Research methodology. Kitab Mahal.
- 6. Tripathi, P. C. (2018). Research methodology in social science. Sarup & Sons.
- 7. Thomas, G. (2022). Research methodology and scientific writing. Springer.

Research Papers:

- 1. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. In Journal of Business Research (Vol. 104, pp. 333–339). Elsevier BV. <u>https://doi.org/10.1016/j.jbusres.2019.07.039</u>
- Kolstoe, S. E., Durning, J., Yost, J., & Aleksandrova-Yankulovska, S. (2023). Ranking Research Methodology by Risk — a cross-sectional study to determine the opinion of research ethics committee members. In Systematic Reviews (Vol. 12, Issue 1). Springer Science and Business Media LLC. <u>https://doi.org/10.1186/s13643-023-02295-1</u>

NPTEL/SWAYAM

- 1) Research Methodology https://www.youtube.com/watch?v=E2gGF1rburw
- 2) Issues in hypothesis testing part 1- https://www.youtube.com/watch?v=p2M_0e5bxTA

3) Issues in hypothesis testing part 2 - <u>https://www.youtube.com/watch?v=KSwM5qo_yoQ</u>

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carry 10 marks Question

Rubrics for Continuous Evaluation

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	2	3
CO2	3	2	2	3	3	3
CO3	3	2	3	2	3	3
CO4	3	2	2	3	3	3
CO5	2	3	3	3	3	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Category: Research Course

Course Code: VES2409P02

Course Title: Research Seminar

	Teaching Scheme				Evaluation Scheme					
					Theory % Marks		Practical % Marks		/0	
L	Т	Т	Р	Cr	Exam		Min		Μ	lin
					Max	for	Max	fo	r	
						Pass		Pa	ISS	
0	0	2	1	CCA			TW 50	20	40	
0	0	26	Total: 26	ESE			OR 50	20	40	

Category: Engineering Course

A research seminar is an in-depth academic course designed to enhance student's research skills and knowledge in a specific field. It involves regular meetings where students present their research progress, engage in critical discussions, and receive feedback from peers and instructors.

Prerequisites: Advances in Engineering & technology

Course Objectives:

- 1. To expose students to latest advancements in advanced engineering to address real world challenges.
- **2.** To foster skills in scientific communication and presentation through structured research findings.

fter successful completion of the course the student will be able to
ch findings and technological innovations in the advancement of
ld
tical and practical knowledge to propose solutions to complex
earch problems

Syllabus

Task 1 Selection of broad research domain

Task 2 Literature Review

Task 3 Methodologies for research work

Task 4 Experimentation/Simulation/Numerical analysis/mathematical modelling

Task 5 Results & Discussion

Task 6 Summary

Prepare a research seminar report and present.

References Books:

- Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & FitzGerald, W. T. (2016). The craft of research (4th ed.). University of Chicago Press.
- Capstone, R. H. (2015). Designing and teaching undergraduate capstone courses. Jossey-Bass
- Limonta, C. H., Corsi, M., & White, D. J. (2020). Effective scientific communication: The other half of science. Oxford University Press.
- Day, R. A., & Gastel, B. (2016). How to write and publish a scientific paper (8th ed.). Greenwood.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Component	Level	Research Seminar	Total	Process Evaluation						
Continuous Comprehensive Assessment (CCA)	Faculty	To findings and technological innovations in the advancement of engineering field and prepare a report	50	Refer CCA Guideline						
ESE	Institute	Research Seminar Presentation	50	Oral						

Rubrics for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	2	2	2	3	2	3					
CO2	2	2	2	3	2	3					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I Category: Non Credit Course

Course Code: NCC2409L02-A

Course Title: Disaster Management

	Teaching Scheme					Evaluation Scheme					
L		Р	Cr	Exam	Theory	% Marks	Practical % Marks				
	Т				Max	Min for Pass	Max	Min for Pass			
2	0	0	0	CCA	100	40					
26	0		Total: 26	CCA	100	40	-	-			

Category: Engineering Course

Prerequisites:

Basic Understanding of Geography and Environmental Science, Knowledge of emergency protocols, first aid, and the roles of various agencies in disaster response and recovery, Knowledge of Risk Assessment and Management.

Course Objective:

- 1. Understand disaster risk management.
- 2. Develop emergency response skills.
- 3. Enhance disaster resilience.

Course Outcomes: After successful completion of the course the student will be able to

- CO1 Learning and understanding the basic knowledge of Disaster Management concept and different approaches to reduce the impact of disaster
- CO2 Understand the types of disaster their origin causes and their management and the disaster profile of India
- CO3 Learning to apply the knowledge of technology for monitoring and management of the disaster

CO4 Drill based learning of disaster management

Syllabus

Introduction on Disaster Unit I **07 hrs** Different Types of Disaster : A) Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides etc B) Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster, Biological Disasters, Accidents (Air, Sea, Rail & Road), Structural failures(Building and Bridge), War & Terrorism etc. Causes, effects and practical examples for all disasters. Unit II Mitigation and Management techniques of Disaster **07 hrs** Basic principles of disasters management and crisis management. Disaster Management cycle, Scopes of and criteria of prevention and mitigation of disasters, Aspects of disaster response and Recovery, Important criteria of relief Mechanism. Unit III **Geo-informatics in Disaster Management 06 hrs** Remote Sensing (RS), Geographical information system (GIS), Global Positioning Service (GPS), Indian Regional Navigation Satellite System (IRNSS): NavIC Indian Tsunami Early Warning System (ITEWS) Use of ICT and mobile technology for Disaster management, Application of Drone. Unit IV **Disaster Management Act 06 hrs** Disaster Management Act 2005, Institutional framework under Disaster Management act 2005, Role of National Disaster Management Authority (NDMA) Search and Rescue Operations, (one and twoperson method) Demonstration of Earthquake Evacuation Drill Demonstration of Fire Drill

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

ReferenceBooks

1. Savindra Singh, Jeetendra Singh, Disaster management, Pravalika Publications, Allahabad, 2016

- 2. Alexander David, Introduction in Confronting Catastrophe, Oxford University Press, 2000.
- 3. Kapur, Anu& others, Disasters in India Studies of grim reality, Rawat Publishers, Jaipur, 2005.
- 4. Mukta Girdhar, Natural Disasters, Amy publication, Dariyaganj, New Delhi, 2019.
- 5. Dr. Mrinalini Pandey, Disaster Management, Wiley India Pvt. Ltd.

6. Andharia J. Vulnerability in Disaster Discourse, JTCDM, Tata Institute of Social SciencesWorking Paper No. 8, 2008.

7. Govt. of India: Disaster Management Act 2005, Government of India, New Delhi

WebReferences

- 1. https://onlinecourses.swayam2.ac.in/cec19_hs20/preview
- 2. https://nptel.ac.in/courses/124107010
- 3. https://archive.nptel.ac.in/courses/105/104/105104183/

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous	Faculty	25	25	25	25	100	40	Refer CCA
Comprehensive Assessment								Guideline
(CCA)								

	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	3	3	3	1	2						
CO2	3	3	2	3	2	3						
CO3	3	1	2	2	3	3						
CO4	3	3	3	2	2	2						

CO-PO Mapping

3: High, 2: Moderate, 1: Low, 0: No Mapping *****

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I Category: Non Credit Course

Course Code: NCC2409L02-B

Course Title: Value Education

	Teaching Scheme				Evaluation Scheme					
L			Cr	Exam	Theory % Marks		Practical % Marks			
	Т	Р			Max	Min for Pass	Max	Min for Pass		
2	0	0	0	$CC\Lambda$	100	40				
26	0		Total: 26	CCA	100	40	-	-		

Category: Engineering Course

Prerequisites:

Basic Understanding of Ethical Principles, Awareness of Cultural and Social Norms

Course Objective:

- 1. Cultivate an understanding of ethical principles and values, promoting integrity, honesty, and responsibility in personal and professional life.
- 2. Develop empathy and respect towards diverse perspectives, cultures, and beliefs, fostering inclusive and compassionate attitudes.
- 3. Encourage critical thinking skills to evaluate moral dilemmas and make ethical decisions aligned with personal values and societal well-being.

Course Outcomes: After successful completion of the course the student will be able to

- CO1 Understand the meaning of values and culture
- CO2 Develop as social responsibility, Create a communal harmonious society and practice unity in diversity
- CO3 Identify the power of thoughts and words
- CO4 Correlate the relationship between values and human rights

Syllabus

Unit I	Introduction to Value Education	07 hrs					
Value Edu	Value Education – Definition, Evolution of value oriented education, Concept of Human						
Values – F	amily Values - Aesthetic Values – Ethical Values – Spiritual Values						
Unit II	Character Formation: Personal & Personality Development	07 hrs					
Self-Discip	oline – Self-Confidence – Self-Initiative – Self-awareness –Em	pathy –					
Compassio	on – Forgiveness – Honesty and Courage						
Leadership	Leadership qualities – Personality Development						
Unit III	The Power of Mind	06 hrs					
Definition, Meaning, Scope of Yoga - Aims and objectives of Yoga - Yoga Education with modern context - Different traditions and schools of Yoga - Yoga practices: Controlling Mind – Physical Exercise –Meditation – Mudras – Yoga – Asanas							
Concept of Mind in the Upanishads – Moralization of Desires – Neutralization of Anger – Five Ways to Check Worry Habit and Eradication – Benefits of Blessings.							
The Power of Mind – the Power of Positive Thinking							
Unit IV	Human Rights and Universal Values	06 hrs					
Concept of Human Rights – Classifications of Human Rights and Relevant Constitutional							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Provisions: Right to Life, liberty ad Dignity- Right to equality- Right against exploitation-Cultural and Educational Right- Economic Rights- Political Rights- Social Rights - Human Rights of Women and Children – Peace and harmony.

ReferenceBooks

Text Books

1. Das, M.S. & Gupta, V.K, Social Values among Young adults: A changing Scenario, MD Publications, New Delhi, 1995

2. Vivekananda, Swami, Personality Development, Advaita Ashrama, Kolkata, 2008

3. R. C. Pradhan, Language and Mind in the Upanishads, Language and Mind: The Classical Indian Perspective, ed. K. S. Prasad, Hyderabad Studies in Philosophy no. 5, Decent Books, New Delhi, 2008

4. Vincent Peale, Norman, Six Attitudes for Winners, Jaico Publishing House, Mumbai, 2009.

5. Dr. Mrinalini Pandey, Disaster Management, Wiley India Pvt. Ltd.

Reference Books

1. Andharia J. Vulnerability in Disaster Discourse, JTCDM, Tata Institute of Social SciencesWorking Paper No. 8, 2008.

2. Govt. of India: Disaster Management Act 2005, Government of India, New Delhi

WebReferences

- 1. https://www.hzu.edu.in/bed/Basics-in-Education%20(NCERT).pdf
- 2. https://nptel.ac.in/content/storage2/courses/109101003/downloads/Lecture-6.pdf
- 3. 3. https://nptel.ac.in/content/storage2/courses/109104115/PDF/lec38.pdf

Rubrics for Continuous Evaluation								
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	25	25	25	25	100	40	Refer CCA Guideline

				mapping			
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	3	1	2	
CO2	3	3	2	3	2	3	
CO3	3	1	2	2	3	3	
CO4	3	3	3	2	2	2	
							Î

CO-PO Mapping

3: High, 2: Moderate, 1: Low, 0: No Mapping

D. Y. PATIL COLLEGE OF ENCINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Category: Non Credit Course Course Code: NCC2409L02-C Indian Knowledge System

Course Title: Constitution of India and

	Evaluation Scheme							
					Theory % Marks		Practical % Marks	
L	Т	Р	Cr	Exam	Max	Min for Pass	Max	Min for Pass
2	0	0	0	CCA	100	40		
26	0		Total: 26	CCA	100	100 40		-

Category: Engineering Course

Prerequisites:

Basic Understanding of Indian History. Basic concepts such as democracy, federalism, and the separation of powers. Awareness of contemporary political and legal issues in India. Ability to read and understand complex legal and political texts. Indian Knowledge System

Course Objective:

- 1. Explore the historical background and evolution of the Constitution of India, examining the factors and events that influenced its development.
- 2. Comprehensive understanding of the structure, fundamental principles, and values enshrined in the Constitution, including democracy, equality, secularism, and justice.
- 3. Evaluate the fundamental rights and duties of citizens, the structure and functions of central and state governments, and the significance of key constitutional provisions and amendments in shaping India's governance and society.
- 4. Understand the rich heritage of ancient India.

and Amendments

Cours	Course Outcomes: After successful completion of the course the student will be able to					
CO1	Understand the historical context and the making of the Indian Constitution.					
CO2	Analyze the Preamble, fundamental rights, duties, and directive principles.					
CO3	Describe the structure and functions of the central and state governments and also Interpret					
	key constitutional provisions and understand the amendment process.					
CO4	Appreciate the significance of major constitutional bodies and landmark judgments					

Syllabus

Unit I Introduction to the Constitution of India	07 hrs					
Historical Background: Making of the Indian Constitution, Constituent Assembly, influences						
from other constitutions.						
Preamble: Philosophy, objectives, and interpretation.						
Salient Features: Federal structure, parliamentary system, separation of powers,	fundamental					
rights and duties.						
Unit II Fundamental Rights and Duties	07 hrs					
Fundamental Rights: Equality, Freedom, Protection from exploitation, Freedom of religion,						
Fundamental Rights: Equality, Freedom, Protection from exploitation, Freedom	of religion,					
<i>Fundamental Rights:</i> Equality, Freedom, Protection from exploitation, Freedom Cultural and educational rights, Constitutional remedies.	of religion,					
<i>Fundamental Rights:</i> Equality, Freedom, Protection from exploitation, Freedom Cultural and educational rights, Constitutional remedies. <i>Directive Principles:</i> Classification, significance, and relation with Fundamental	of religion, Rights.					
<i>Fundamental Rights:</i> Equality, Freedom, Protection from exploitation, Freedom Cultural and educational rights, Constitutional remedies. <i>Directive Principles:</i> Classification, significance, and relation with Fundamental <i>Fundamental Duties:</i> Importance and implementation.	of religion, Rights.					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I

Union Government: President, Prime Minister and Council of Ministers, Parliament. *State Government:* Governor, Chief Minister and Council of Ministers, State Legislature.

Judiciary: Supreme Court, High Courts, Subordinate Courts.

Emergency Provisions: Types, implications.

Special Provisions: For states and regions, Scheduled and Tribal Areas.

Amendments: Procedure, major amendments, Basic Structure Doctrine.

Constitutional Bodies: Election Commission, CAG, UPSC, Finance Commission.

Unit IV	Indian	Knowledge	System
---------	--------	-----------	--------

06 hrs

IKS Domains: Vedanta, Vedic Literature, Science, Mathematics, Astronomy, Ayurveda, Yoga, Ashtang Yoga, Indian Architecture and Town Planning, Indian Fine Arts, Indian Metallurgy, Agriculture

ReferenceBooks

1. Introduction to the Constitution of India, by D.D. Basu

- 2. Indian Polity, by M. Laxmikanth
- 3. Our Constitution, by SubhashKashyap

Reference Books

1. Journals and Articles: Constitutional Law journals, law review articles.

WebReferences

Government of India, Ministry of Law and Justice, National Portal of India https://iksindia.org/

Rubrics for Continuous Evaluation								
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous	Faculty	25	25	25	25	100	40	Refer CCA
Comprehensive								Guideline
(CCA)								

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	3	1	2				
CO2	3	3	2	3	2	3				
CO3	3	1	2	2	3	3				
CO4	3	3	3	2	2	2				

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester I Course Category: Non Credit Course

Course Title: Pedagogy Studies

Course Code: NCC2409L02-D

Teaching Scheme				Evaluation Scheme				
					Theory % Marks		Practical % Marks	
L	Т	Р	Cr	Exam	Max	Min for Pass	Max	Min for Pass
2	0	0	0	CCA	100	40		
26	0		Total: 26	CCA	100	40		-

Category: Engineering Course

Prerequisites:

Basic knowledge of how people learn and the psychological principles of education, Familiarity with Educational Practices

Course Objectives: Purposes of Course are:

- 5. To apply the foundational principles of pedagogy and their application in higher education.
- 6. To develop effective teaching strategies and methodologies.
- 7. To enhance skills in curriculum development and assessment.
- 8. To foster a reflective practice for continuous improvement in teaching.

Course Outcomes: After Successful completion of course units, students will

CO1	Appraise the theoretical foundations of pedagogy for higher education to create interest in
	learning
CO2	Apply various teaching strategies and methods in learning environments to enhance
	competencies and skills in students
CO3	Develop curriculum and assessment plans that align with learning objectives for fulfilling
	gaps in curriculum to make it more effective and ready for future requirements
CO4	Reflect critically on their teaching practices and implement improvements in order to
	uplift learning outcomes achieved by students after every contact hour

Syllabus

Unit 1	Foundations of Pedagogy						
Pedagogy	Pedagogy Applied, Historical Perspectives on Education, Theories of Learning and Instruction,						
Cognitive	Cognitive, Social, and Constructivist Theories, Pedagogical Approaches: Teacher-Centered vs.						
Learner-C	entered, Ethics and Values in Education						
Unit 2	Teaching Strategies and Methods	06 hrs					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Instructional Design and Planning, Active Learning Strategies, Collaborative and Cooperative Learning, Technology-Enhanced Learning, Inclusive Teaching Practices, Classroom Management Techniques

Unit 3Curriculum Development and Assessment07 hr
--

Curriculum Design Principles, Aligning Curriculum with Learning Outcomes, Formative and Summative Assessment Techniques, Designing Assessments for Diverse Learners, Feedback and its Role in Learning, Evaluating Teaching Effectiveness

Unit 4Reflective Practice and Professional Development06 hrs

Reflective Teaching Practices, Continuous Professional Development (CPD), Action Research in Education, Mentoring and Peer Observation, developing a Teaching Portfolio, Staying Updated with Educational Research

Tutorials

1) Create a group discussion on comparing various pedagogical theories and its suitability of applications

2) Prepare 4 mins effective video students to identify whether the scenario aligns with teachercentered or learner-centered pedagogy.

3) Think-Pair and Share to design a lesson plan incorporating at least two active learning strategies differently for slow learners and advanced learners.

4) Present the curriculum plan and receive feedback from peers, the instructor and prepare modified plan.

References Books:

- 1. Illeris, K. (2018). Contemporary Theories of Learning: Learning Theorists...in Their Own Words. Routledge.
- 2. Brame, C. J. (2020). *Active Learning: Strategies to Promote Active Participation and Engagement*. Harvard University Press
- 3. Wiggins, G., & McTighe, J. (2020). Understanding by Design. ASCD
- 4. Brookfield, S. D. (2017). Becoming a Critically Reflective Teacher. Jossey-Bass

Research Papers

- Sarkar, M., Gutierrez-Bucheli, L., Yip, S. Y., Lazarus, M., Wright, C., White, P. J., Ilic, D., Hiscox, T. J., & Berry, A. (2024). Pedagogical content knowledge (PCK) in higher education: A systematic scoping review. In Teaching and Teacher Education (Vol. 144, p. 104608). Elsevier BV. <u>https://doi.org/10.1016/j.tate.2024.104608</u>
- Oje, A. V., Hunsu, N. J., & May, D. (2023). Virtual reality assisted engineering education: A multimedia learning perspective. In Computers & amp; Education: X Reality (Vol. 3, p. 100033). Elsevier BV. <u>https://doi.org/10.1016/j.cexr.2023.100033</u>

NPTEL/Swayam

5. Outcome Based Pedagogic Principles for Effective Teaching - Prof. Dr. Shyamal Kumar Das Mandal - IIT Kharagpur

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester I

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	25	25	25	25	100	40	Refer CCA Guideline

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	2	2	3
CO2	3	3	2	3	3	3
CO3	3	2	1	1	3	3
CO4	3	2	1	3	3	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus Structure

	Те	achin	g Sche	me	Evaluation Scheme						
Course Code	Course						The M	eory 9 Iarks	Practical % Marks		
Course Coue	Course	L	Т	Р	Cr	Exam	Max	Min for Pass		Max	Min for Pass
VES2410L01	Analog CMOS Design	3	1	0	1	CCA	50	20	40		_
VE32410E01	Analog CIVIOS Design	5	1	U	+	ESE	50	20	40		_
VES2410L02	System on Chin	2	1	0	1	CCA	50	20	40		
vES2410L02	System on Chip	3			4	ESE	50	20	40	-	
VES2410L02 Embedded Automotive		2	1	0	1	CCA	50	20	40	-	-
vES2410L05	Systems	3	1	U	+	ESE	50	20	40		
VES2410L04	Drogram Elective Course 2	2	1	0	4	CCA	50	20	40		
vES2410L04	Frogram Elective Course 2	5	1	0	4	ESE	50	20	40	-	-
VES2410D01	Laboratory Drastics II	0	0	4	2	CCA	-	-	-	50	20
VES2410F01		0	0	4	2	ESE	-	-	-	50	20
VES2410P02	Skill Development Course	0	0	4	2	CCA	-	-	-	100	40
VES2410P03	Industry based Mini Project		0	4	2	CCA	-		-	50	20
						ESE	-		-	50	20
NCC2410L01 Non Credit Course 2			0	0	0	CCA	100	4	-0	Pass	s/Fail
	Total	14	4	12	22						

Program Elective Course 2						
VES2410L04 Embedded Product Design						
VES2410L05 High Speed ICs						
VES2410L06 Mixed Signal IC Design						
	Embedded Signal Processor					
VES2410L07	Architectures					
VES2410L08	Real Time Operating Systems					

Non Credit Course 2								
NCC2410L01	Stress Management by Yoga							
NCC2410L02	Personality Development through Life Enlightenment Skills							
NCC2410L03	IPR							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Category: Program Core Course 4

Course Code: VES2410L01

Course Title: Analog CMOS Design

	Teaching	Evaluation Scheme							
					Theory % Marks			Pract Ma	ical % arks
L	Т	Р	Cr	Exam		Min	for		Min
					Max	Pass		Max	for Pass
2	1	0	4	CCA	50	40			1 ass
3	1	0	4	CCA	- 30	40	40		
39	13	0	Total:52	ESE	50	40	40		

Prerequisites: Semiconductor physics, Analog circuit analysis, Linear Integrated Circuits, Digital CMOS Design

Course Objectives:

- 1. To understand theory of analog circuits using MOS small signal models
- 2. To understand design principles and techniques of CMOS Amplifiers
- 3. To gain design aspects of HF and Low Noise Amplifiers
- 4. To learn different methods of Stability and Frequency Compensation

Course Outcomes : After successful completion of the course the student will be able to:

CO1	Compare and contrast Simple MOS Large-Signal Model and Small-Signal Model for the MOS Transistor and modeling techniques.
CO2	Design the current mirror circuits for various applications like differential amplifier and operational amplifier.
CO3	Design and analyze various CMOS analog amplifiers, High Frequency and Low Frequency Noise Amplifiers.
CO4	Design and analyze various stages of Operational amplifiers using CMOS devices.
CO5	Design and construct two stage comparator and compare between the open loop and discrete time comparators using op-amp.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	MOS Devices and Modeling	7hrs						
MOS Tran Device M Model for	MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Subthreshold MOS Model.							
Unit II	Unit II Analog CMOS Sub circuits							
MOS Swi Current m Mirror, Cu	MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirror Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.							
Unit III	CMOS Amplifiers, HF Amplifiers & Low Noise Amplifier	8hrs						
Design of Folded cas estimate b design, De	Design of CMOS amplifiers, Inverting amplifiers, Cascode amplifiers, Differential amplifiers, Folded cascade; Current amplifiers, Output amplifier.Open and Short circuit methods to estimate bandwidth, multistage amplifiers for high bandwidth, Low Noise Amplifier (LNA) design, Design of mixer, Advanced trends in Radio Frequency (RF) chip design.							
Unit IV	CMOS Operational Amplifiers	8hrs						
Design of Power-Su Technique	⁷ CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage pply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Me es of OPAmp.	Op Amps, easurement						
Unit V	Comparators	8hrs						
Characteri Comparate Comparate	Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.							
Reference Books								
 Thoma edition, Ca Razavi Allen I University 	 Thomas Lee, "The Design of CMOS Radio – Frequency Integrated Circuits", Second edition, Cambridge. Razavi B, "Design of Analog CMOS Integrated Circuits", McGraw-Hill. Allen P E and Holberg D R, CMOS Analog Circuit Design, Second Edition, Oxford University Press. 							

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	I Title: MOS Devices and Modeling								
Derive and	Derive and compare the large-signal and Small-Signal Model for the MOS Transistor.								
Unit II	Title: Analog CMOS Sub circuits	3 hrs							
Simulate C should be c which the si	Simulate Current mirror circuits and analyze them using a SPICE simulator. The results should be compared with approximate manual calculations. As a result, write a report in which the simulations and calculations are discussed.								
Unit III	Unit III Title: CMOS Amplifiers, HF Amplifiers & Low Noise Amplifier 3 hrs								
Simulate th amplifiers u	e basic circuit of Inverting amplifiers, Cascode amplifiers, Differe sing SPICE simulator.	ntial							
Implement	Open and Short circuit methods to estimate bandwidth of Low Noise	Amplifier.							
Unit IV	Title: CMOS Operational Amplifiers	3 hrs							
Design a Two-Stage Op Amps and derive its performance parameters.									
Unit V Title: Comparators 2 hrs									
Compare the various types of comparators on the basis of different circuit performance metrics.									

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	2	2	2	1	1
CO3	3	2	2	3	2	1
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Core Course 5

Course Code: VES2410L02

Course Title: System On Chip

	Evaluation Scheme										
					Theory % Marks			Pract Ma	ical % arks		
L	Т	Р	Cr Exam		Cr Exam Min for		Exam		Min fra		Min
					Max	Pass		Max	for		
							-		Pass		
3	1	0	4	CCA	50	40	40				
39	13	0	Total:52	ESE	50	40	40				

Prerequisites: Digital CMOS Design, Microprocessor and Microcontroller, Embedded System Design

Course Objectives:

- 1. To understand the basic concepts and models in SoC
- 2. To explore Micro-programmed Architectures and SoC modeling
- 3. To explore features of simulation and synthesis of RTL intent
- 4. To learn recent trends in SoC design

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Apply Design flow graphs flow modeling, finite state machine and simulation with RTL synthesis.
CO2	Compose System on Chip modeling and hardware/software interfaces with respect to communication protocol
CO3	Analyze memory architectures for System on Chip like internal and external memory.
CO4	Appraise the SoC memory system design, embedded software and energy management techniques for SoC design, SoC prototyping, verification, testing and physical design.
CO5	Design System on Chip using AES algorithms in image compression.

Department of Electronics and Telecommunication

Т

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

	Basic Concepts	Thrs
The nature concurrent limitations control flo hardware, for FSMD	e of hardware and software, data flow modeling and implementation, the models, analyzing synchronous data flow graphs, control flow modeling of data flow models, software and hardware implementation of data flow, ow and data flow, Finite State Machine with data-path, cycle based I hardware model, FSMD data-path, simulation and RTL synthesis, language.	ne need for ng and the analysis of bit parallel ge mapping
Unit II	Micro-programmed Architectures	8hrs
Limitation machine in embedded compiled o modeling, , co-proc Programm	as of FSM, Micro-programmed : control, encoding, data-path, Micro-programmed interrupt and pipelining, Generatories, processors, The RISC pipeline, program organization, analyzing the code, System on Chip, concept, design principles, portable multimedia sy hardware/software interfaces, synchronization schemes, memory mapped essor interfaces, coprocessor control shell design, data and contrater's model.	rogrammed ral purpose e quality of stem, SOC l Interfaces rol design,
Unit III	Memory Design for SOC	8hrs
Overview Cache Org Types of C	of SOC external memory, Internal Memory, Size, Scratchpads and Cach ganization, Cache data, Write Policies, Strategies for line replacement at Cache, Split – I, and D – Caches, Multi Level Caches, Virtual to real the port System Models of Simple Processor memory interaction	e memory, miss time, ranslation ,
SOC Mem	ory System, wodels of Simple Processor – memory interaction.	
Unit IV	RTL intent	8hrs
Unit IV Simulation logic, fac synchroniz factors aff on backen	RTL intent n race, simulation-synthesis mismatch, timing analysis, timing parameters tors affecting delay and slew, sequential arcs, clock domain cro- zation , preventing data loss through FIFO, Importance of low power, o ecting power, switching activity, simulation limitation, implication on syn d.	8hrs for digital ssing, bus causes and nthesis and
Unit IV Simulation logic, fac synchroniz factors aff on backen Unit V	RTL intent n race, simulation-synthesis mismatch, timing analysis, timing parameters tors affecting delay and slew, sequential arcs, clock domain crozation , preventing data loss through FIFO, Importance of low power, decting power, switching activity, simulation limitation, implication on synd. Application Studies / Case Studies	8hrs for digital ssing, bus causes and nthesis and 8hrs
SOC Mem Unit IV Simulation logic, fac synchroniz factors aff on backen Unit V SOC Desig compressio	RTL intent n race, simulation-synthesis mismatch, timing analysis, timing parameters tors affecting delay and slew, sequential arcs, clock domain crozation , preventing data loss through FIFO, Importance of low power, decting power, switching activity, simulation limitation, implication on synd. Application Studies / Case Studies gn approach, AES algorithms, Design and evaluation, Image compression - on.	8hrs for digital ssing, bus causes and nthesis and 8hrs – JEPG
Vnit IV Simulation logic, fac synchroniz factors aff on backen Unit V SOC Desig compression Reference	RTL intent n race, simulation-synthesis mismatch, timing analysis, timing parameters tors affecting delay and slew, sequential arcs, clock domain crozation , preventing data loss through FIFO, Importance of low power, decting power, switching activity, simulation limitation, implication on synd. Application Studies / Case Studies gn approach, AES algorithms, Design and evaluation, Image compression on. e Books	8hrs for digital ssing, bus causes and nthesis and 8hrs – JEPG

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: Basic Concepts							
Determine a	possible implementation for each of the following C statements in h	ardware.						
You can assu	me that all variables are integers and that each of them is stored in a	register.						
	(a) $a = a + 1;$							
	(b) if $(a > 20)$ $a = 20;$							
((c) while $(a < 20)$ $a = a + 1$							
Unit II	Title: Micro-programmed Architectures	3 hrs						
Analyze the	following terms:							
a) Control	hazard and data hazard							
b) One-Wa	y and Two-Way Handshake							
Unit III	Title: Memory Design for SOC	3 hrs						
Analyze vari	ous memories of SOC and explain in detail cache memory organization	on.						
Unit IV	Title: RTL intent	2 hrs						
Classify Bus Method.	Synchronization along with the Challenges in it and Enable Synchron	nization						
Unit V	Fitle: Application Studies / Case Studies							
Judge the De	esign Issues and Techniques for image codec							

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	3	2	1	2
CO2	3	-	-	2	1	1
CO3	3	2	2	2	-	-
CO4	3	2	2	3	2	1
CO5	3	2	1	2	1	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Category: Program Core Course 6

Course Code: VES2410L03

Course Title: Embedded Automotive Systems

	Evaluation Scheme								
	Т	Р	Cr	Exam	Theory % Marks			Practical % Marks	
L						Min for Pass			Min
					Max			Max	for Pass
3	1	0	4	$CC\Lambda$	50	20			
Total Hours			CCA	50	20	40	-	-	
39	13	0	Total: 52	ESE	50	20			

Prerequisites: Embedded system Design

Course Objectives: After successful completion of the course the student will be able to:

- 1. To introduce the potential of automotive systems in industries
- 2. To understand Automotive Sensory Systems

3. To explain the importance of Automotive control in system design

4. To make students aware of different Automotive protocols for internal communication.

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Analyze the fundamentals of different Automotive Systems in Automotive vehicle technology.
CO2	Comprehend utility of sensors and instrumentation in vehicle systems like automotive sensors and transducers.
CO3	Design control system for various vehicular modules like digital engine control, fuel control, EGR control.
CO4	Interpret various control Modes of automotive Systems like cruise control system, electronic suspension system and electronic steering control.
CO5	Illustrate the various automotive protocols such as LIN, CAN, KWP2000 and J1939, FlexRay and use of vehicle calibration tools

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Automotive Systems Overview							
Automotive Vehicle Technology, Overview of Vehicle Categories, Various Vehicle Sub Systems like Chassis, Body, Driveline, Engine technology, Fuelling technology, vehicle Emission, Brakes, Suspension, Emission, Doors, Dashboard instruments, Wiring Harness, Safety & Security, Comfort & Infotainment, Communication & Lighting, Future Trends in Automotive Embedded Systems: Hybrid Vehicles, Electric Vehicles.								
Unit II	Automotive Sensory System	8 hrs						
Automotiv Humidity, Distance S Sensor & Considera	Automotive Sensors and Transducers: Temperature, Manifold and Barometric Pressures, Humidity, Carbon Dioxide (CO2), Carbon Monoxide (CO), Oxygen (O2) Sensor, Proximity Distance Sensors, Engine Speed sensor, Throttle Position Sensor, Pressure Sensors, Knock Sensor & Mass Flow Sensor. Typical Sensors Specifications & Microcontroller Interface Considerations, Sensor Calibration, Curve fitting.							
Unit III	Automotive Control System Design	8 hrs						
Digital En Control, E Engine Co	Digital Engine Control, Features, Control Modes for Fuel Control, Discrete Time Idle Speed Control, EGR Control, Variable Valve Timing Control, Electronic Ignition Control, Integrated Engine Control System.							
Unit IV	Control Modes	8 hrs						
Summary Braking S Steering.	of Control Modes, Cruise Control System, Cruise Control Electronics, A System, Electronic Suspension System, Electronic Steering Control, F	nti-locking Four-Wheel						
Unit V	Automotive Protocols and Calibration and Diagnostics Tools	8 hrs						
The need for Protocol, Automotive Protocols: LIN, CAN, KWP2000 and J1939, FlexRay, Test, Calibration and Diagnostics tools for networking of electronic systems like ECU Software and Testing Tools, ECU Calibration Tools								
Test, Calib Software a	for Protocol, Automotive Protocols: LIN, CAN, KWP2000 and J1939, pration and Diagnostics tools for networking of electronic systems like EC and Testing Tools, ECU Calibration Tools	, FlexRay, U						
Test, Calib Software a Reference	for Protocol, Automotive Protocols: LIN, CAN, KWP2000 and J1939, pration and Diagnostics tools for networking of electronic systems like EC and Testing Tools, ECU Calibration Tools Books	, FlexRay, U						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: Automotive Systems Overview	2 hrs						
Determine th each. Assess the w	Determine the various operating models and compare advantages and disadvantages of each. Assess the working of spark plug & disk braking systems with suitable diagrams.							
Unit II	Title: Automotive Sensory System	2 hrs						
Examine with warning syst	h a suitable diagram Fuel Injectors in Petrol engine along with the sec em.	curity&						
Inspect the s and telematic	election criteria of sensors for automotive applications like RADA	Rranging						
Unit III	Title: Automotive Control System Design	3 hrs						
Compare the control.	electronics steering control system and automatic rain operated v	wiper						
Propose the s	superset of variables sensed in engine control system							
Unit IV	Title: Control Modes	3 hrs						
Examine the	role of control system strategies in fine tuning an automotive system?)						
Present the co	omponents of an electronically controlled engine with suitable diagrar	ns.						
Compare ana	log & digital cruise control systems.							
Unit V	Title: Automotive Protocols and Calibration and Diagnostics Tools	3 hrs						
Demonstrate	protocol wakeup & startup with respect to FlexRay protocol.							
Construct co	nnection schematic of CAN centrate & ReCANcentrate.							
Compare LIN	N & Flex Ray with respect to automotive applications.							
Relate the im tools.	portance of calibrated test equipment? Hence make use of vehiclecal	ibration						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

Rubrics for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	2	2
CO2	3	3	2	2	1	2
CO3	3	2	2	1	1	2
CO4	3	2	2	2	2	1
CO5	3	2	2	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Elective Course 2

Course Code: VES2410L04

Course Title: Embedded Product Design

Teaching Scheme				Evaluation Scheme					
L	Т	Р	Cr	Exam	Theory % Marks			Practical % Marks	
					Max	Min for			Min
						Pa	Pass		for Pass
3	1	0	4	CCA	50	20			
Total Hours				CCA	30	20 2	40	-	-
39	13	0	Total: 52	ESE	50	20			

Prerequisites: Embedded System Design, Processor Design

Course Objectives: After successful completion of the course the student will be able to:

1. To understand design challenges of embedded hardware and software

2. To gain knowledge of testing and verification issues in design cycle

- 3. To introduce h/w and s/w design models with different technology
- 4. To learn the importance of documentation for technology transfer

Course Outcomes :Student will:

CO1	Distinguish specifications and design challenges of embedded products.
CO2	Estimate cost of embedded product for cost efficient product design.
CO3	Demonstrate the knowledge of embedded product design related software design tools
CO4	Develop design technology using hardware design, validation and maintenance.
CO5	Analyze the aspects of Mechanical Packaging, Testing, reliability and failure analysis

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Overview of Embedded Products					
Need, Design challenges, product survey, specifications of product need of hardware and software, Partitioning of the design into its software and hardware components, Iteration and refinement of the partitioning.						
Unit II	Design Models and Techniques					
Various models of development of hardware and software, their features, different Processor technology, IC technology, Design Technology.						
Unit III	Modules of Software	8hrs				
Tradeoffs, Custom Single-purpose processors, General Purpose processors, Software, Memory, Interfacing						
Unit IV	Design Technology	8hrs				
Hardware design, FPGA design, firmware design, driver development, RTOS porting, cost reduction, reengineering, optimization, maintenance, validation and development, prototyping, turnkey product design						
Unit V	Testing and Verification	8hrs				
Embedded products-areas of technology, Design and verification, Integration of the hardware and software components, testing- different tools, their selection criterion.						
Reference Books						
 Vahid Frank and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley Publication. Marwedel P, "Embedded System Design", Springer Publication. 						

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: Overview of Embedded Products						
Appraise the	Appraise the needs of software and software partitioning in embedded product design.						
Unit II	Title: Design Models and Techniques	2 hrs					
Compare di	Compare different processor Technology, IC Technology and Design Technology.						
Unit III	Title: Modules of Software	3 hrs					
Demonstrat Sketch diag	Demonstrate software and memory Interfacing used for computer system design with a neat Sketch diagram.						
Unit IV	Title: Design Technology	3 hrs					
Identify and industrial au	Identify and emphasize the different Embedded Product design Technologies useful for industrial automation, Internet of Things and innovative technology integration.						
Unit V	Title: Testing and Verification	3 hrs					
Compare different Testing & Verification tools used in Embedded Product Design such as static analysis and dynamic analysis.							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	1
CO2	3	-	-	2	1	-
CO3	3	2	2	1	-	-
CO4	3	2	2	2	2	1
CO5	3	2	1	1	1	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Elective Course 2

Course Code: VES2410L05

Course Title: High Speed ICs

		Evalua	tion S	chen	ıe							
		Р			Theory % Marks			Practical % Marks				
L	Т		Р	P Cr Exam	Cr Exam	Cr	Exam		Exam		Min for	
						Max	Pa	IOF SS	Max	for Pass		
3	1	0	4	CCA	50	20						
	Total	Hours		CCA	30 20 40		-	-				
39	13	0	Total: 52	ESE	50	20						

Prerequisites: Digital CMOS Design, Analog CMOS Design, System on Chip

Course Objectives:

- 1. To understand basic design aspects of high frequency circuits
- 2. To explain different characteristics of high speed logic families
- 3. To learn design issues of interconnects in High Speed Circuit Design

Course Outcomes : After successful completion of the course the student will be able to:

CO1	Analyze details about High Speed VLSI Circuits Design like high frequency circuits in wireless and fiber optic systems.
CO2	Identify the basic need of high speed digital logic families such as Bi-CMOS MOS-HBT logic, Pseudo-CML logic, Other bipolar, MOS and Bi-CMOS CML, and ECL gates.
CO3	Justify various types of VLSI interconnections like Single level interconnections and parallel multi level interconnections.
CO4	Analyze various interconnection delay models for microstrip interconnections and Multilayer Integrated circuits.
CO5	Evaluate high speed circuit designs with respect to crosstalk due to connectors, near and far end crosstalk and cross talk in terminators and also acquire insights of IC packaging.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Overview of high-frequency ICs	7 hrs						
A brief history of high-frequency integrated circuits and its design, High-frequency circuits in wireless, fiber-optic and imaging systems.								
Unit II	High speed digital logic families	8 hrs						
High-spee HBT logic CML/ECI	High-speed digital logic families, Design methodology for maximum data rate, Bi-CMOS MOS HBT logic, Pseudo-CML logic, Other bipolar, MOS and Bi-CMOS CML, and ECL gate CML/ECL gate layout techniques.							
Unit III	VLSI interconnections	8 hrs						
Metal-Insu Line Ana Multilevel	Metal-Insulator-Semiconductor Microstrip Line Model of an Interconnection., Transmission Line Analysis of Single Level Interconnections, Transmission Line Analysis of Parallel Multilevel Interconnections							
Unit IV	Interconnections delay model	8 hrs						
Very High Interconne	Frequency Losses in a Microstrip Interconnection, Compact Expressions ection Delays, Interconnection Delays in Multilayer Integrated Circuits	for						
Unit V	High Speed Circuit Design and IC Packaging	8 hrs						
High Spee and slotted terminator	ed Properties of logic gates-power, speed and packaging. Cross talk in so d ground planes, Near end and Far end crosstalk. End terminators and cr s.	olid ground coss talk in						
IC packaging - Requirements and properties; materials and substrates; wire-bonding; chip and wafer-level packaging; impact on reliability and testability.								
Reference	Books							
 VoinigescuSorin, "High-Frequency Integrated Circuits", Cambridge University Press. Goel A K, "High-Speed VLSI Interconnections", Second edition, Wiley-IEEE Press. Nakhla M S, Zhang O J, "Modeling and Simulation of High Speed VLSI Interconnects", Springer Publication. Ludwig Reinhold, Bretchko Pavel, "RF Circuit Design Theory and Applications", Pearson education. Howard Johnson, Graham Martin, "High Speed digital Design-A Handbook of Black 								

Magic", Pearson education.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: Frequency analysis for high freq ICs						
Analyze dif transmission	ferent wireless high frequency operating circuits that enable high s n using power lines.	peed data					
Unit II	`itle: High speed Digital CMOS logic families 3 hrs						
Evaluate Cl detection of	MOS based ECL and bipolar devices with respect to sensitivity an analytics with low background noise.	d specific					
Unit III	Title: Interconnection in VLSI model	2 hrs					
Justify the d timing closu	ifferent types of errors in interconnection relevant to power consump are, physical design etc.	tion,					
Unit IV	Title: Delays due to interconnection	3 hrs					
Design and delay and pa	analyze delays occurring due to interconnection like network delay, t ath delay.	ransition					
Unit V	Title: High Speed Circuit Design and IC Packaging	3 hrs					
Analyze and Compare be	l elaborate different types of crosstalk such as positive and negative crosstalk such as positive and negative crosstalk such as positive and wafer-level packaging.	rosstalk.					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	-	3	-
CO2	3	-	-	-	-	2
CO3	3	2	2	1	-	-
CO4	3	2	2	-	2	1
CO5	3	2	2	3	2	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Elective Course 2

Course Code: VES2410L06

Course Title: Mixed Signal IC Design

		Evaluat	tion S	chen	ne				
				Theory % Marks			Practical % Marks		
L	Т	Р	Cr	Exam Min for		for		Min	
					Max Pass		SS	Max	for Pass
3	1	0	4	$CC\Lambda$	50	20			
	Total	Hours		CCA	50	20	40	-	-
39	13	0	Total: 52	ESE	50	20			

Prerequisites: Digital CMOS Design, Analog CMOS Design, System on Chip

Course Objectives:

- 1. To introduced Mixed Signal layout issues in circuit design
- 2. To explain the Architectures of ADC and DAC
- 3. To acquire knowledge on Modeling Data Convertors

Cour	se Outcomes : After successful completion of the course the student will be able to:
CO1	Elaborate the mixed signal issues in circuit design like floor planning, power supply and grounding issues and interconnect considerations.
CO2	Design models for different ADC systems such as successive approximation, dual slope and pipeline.
CO3	Inspect data converter modeling methodologies like time domain description of reconstruction.
CO4	Apply methods to improve SNR like spectral density view, jitter and averaging.
CO5	Evaluate the operation of delta-sigma/ sigma-delta converters and their issues.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Analog and Discrete Time Signals	7hrs					
Analog ve characteris planning, shielding,	Analog versus discrete time signals, converting analog signal to digital signal, Sample and hold characteristics, DAC specifications, ADC specifications, Mixed signal layout issues: floor planning, power supply and grounding issues, fully differential design/ matching, guard rings, shielding, interconnect considerations.						
Unit II	ADC Architectures	8hrs					
Resistor st architectur	tring, R-2R ladder networks, Current steering, Charge-scaling, Pipeline. A res: Flash, Pipeline, Dual slope, Successive approximation, Oversampling	DC ADC.					
Unit III	Data converter modeling	8hrs					
Sampling description implement	Sampling and aliasing: A modeling approach, Impulse sampling, AAF and RCF, Time domain description of reconstruction, The sample and hold, S/H spectral response, Circuit concerns for implementing S/H						
Unit IV	Noise improvement	8hrs					
Quantizati variable, c	on noise, RMS quantization noise voltage, treating quantization noise as a calculating RMS quantization noise voltage from a spectrum	random					
Unit V	Data converter SNR	8hrs					
Effective dynamic ra Jitter and a	number of bits, Signal to noise plus distortion ratio, Spurious free dyna ange, SNR & SNDR, Clock jitter, Averaging to improve SNR, Spectral de averaging	mic range, nsity view,					
Reference	e Books						
 Baker Publication Baker Press Publication Allen, Press Publication 	R J, "CMOS: Mixed Signal Circuit Design", Second edition, Wiley I ons. R J, "CMOS: Circuit Design, Layout and Simulation", Second edition, Wi plications. Phillip E., Holberg, Douglus R., "CMOS Analog Circuit Design", Oxford plications.	EEE Press ley IEEE University					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: Analog and Discrete Time Signals	2 hrs
Elaborate g	round bounce and power supply issue in Analog to Digital converter.	
Unit II	Title: ADC Architectures	2 hrs
Evaluate su oversamplir	ccessive approximation ADC blocks like flash, pipeline, dual slope an ag ADC.	nd
Unit III	Title: Data converter modeling	3 hrs
Design and and reconstr	sample and hold circuit for electronics system using time domain des ruction.	cription
Unit IV	Title: Noise improvement	3 hrs
Evaluate ho noise as a ra	ow to Quantize noise measurement from spectrum by treating quant andom variable and calculating RMS quantization noise voltage from	tization of spectrum.
Unit V	Title: Data converter SNR	3 hrs
Analyze Sp	urious free dynamic range in Digital to Analog converter.	

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

Rubrics for Continuous Evaluation

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	1	2
CO2	3	-	-	2	1	2
CO3	3	2	2	3	1	-
CO4	3	2	2	2	2	1
CO5	3	2	2	2	1	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Elective Course 2

Course Code: VES2410L07 Course Title: Embedded Signal Processor Architectures

	Teaching Scheme					Evaluation Scheme				
L	Т		Cr		Theory % Marks			Practical % Marks		
		Р		Exam		Min for		for		Min
						Max	Pa	SS	Max	for Pass
3	1	0	4	CCA	50	20				
Total Hours				CCA	50	20	40	-	-	
39	13	0	Total: 52	ESE	50	20				

Prerequisites: Embedded System Design, Processor Design, Digital Signal Processing

Course Objectives:

- 1. To impart knowledge on the theoretical aspects of signal analysis and processing
- 2. To explore DSP Processor architectures
- 3. To understand DSP algorithms
- 4. To elaborate real world DSP applications

Course	e Outcomes : After successful completion of the course the student will be able to:
CO1	Analyze DSP system with linear filters using DFT
CO2	Develop technical abilities of designing any applications with FIR and IIR filters
CO3	Apply different memory management technique &Port algorithms like paging, swapping, segmentation and compaction on DSP Processor Platforms
CO4	Elaborate different representation techniques of DSP algorithms such as data flow graph and signal flow graph.
CO5	Analyze filter structures with practical applications of DSP like audio and speech processing, sonar, radar and other sensor array processing.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Signal Analysis and Processing	7 hrs					
Discrete F technique, technique,	Discrete Fourier Transform, Fast Fourier Transform, Design of FIR Filters using windowing technique, Design of IIR Filters through Impulse invariance and bilinear transformation technique, Algorithms of Adaptive Filters, Design and Applications of Adaptive Filters.						
Unit II	Introduction to Digital signal processing systems	8 hrs					
MAC, Bar developme	rel shifter, ALU, Multipliers, Dividers, DSP processor architecture, Softwents, Selections of DSP processors, Hardware interfacing	are					
Unit III	DSP processor architectures	8 hrs					
TMS320C manageme Data Tran	254XX, TMS320C67XX, Blackfin processor: Architecture overview ent, I/O management, Real time implementation Considerations, Memory S sfer, Code Optimization.	, memory System and					
Unit IV	Representations of the DSP algorithms	8 hrs					
Block dia Critical Pa	grams, Signal flow graph, Data-flow graph, Dependence graph. Iteration th, Loop Bound, Algorithm to compute iteration bound, Longest Path Mat	on bounds: rix (LPM).					
Unit V	Practical DSP Applications	8 hrs					
Audio Coo Image Enh	ding and Audio Effects, Digital Image Processing, Two-Dimensional Filter nancement, DTMF generation and detection, FFT algorithms, Wavelet algo	ring, rithms					
Reference	Books						
 Woon- Architect KuoSe and Appl Proakis Applicati Lawren Prentice-J ParhiK 	SengGan, Sen M. Kuo, "Embedded Signal Processing With the Micro Signure", Wiley-IEEE Press. n M, Woon-SengGan," Digital Signal Processors: Architectures, Implementications", Prentice-Hall. s J G, Manolakis D G, "Digital Signal Processing, Principles, Algorithms a ons", Prentice-Hall. nce R. R, Bernard Gold, "Theory and Application of Digital signal Process Hall.	nal itations nd ing",					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I		Title: Signal Analysis and Processing	2 hrs		
1. 2. 3.	Elab Deve trans Solv	orate on Design of FIR Filters using windowing technique elop the Design of IIR Filters through Impulse invariance and bilin formation technique e DFT of a sequence $x(n) = \{0, 1, 2, 4, .6, 8, 7, 3\}$ using DIFFFT algorith	near		
Unit II		Title: Introduction to Digital signal processing systems	2 hrs		
1.	With	neat sketch elaborate the computational building blocks of DSP			
Unit III	Unit III Title: DSP processor architectures				
1. 2.	Drav proc Com	v and elaborate the block diagram of memory interface for TMS3 essor pare the Blackfin processor with TMS320C6713.	20C54XX		
Unit IV		Title: Representations of the DSP algorithms	3 hrs		
1. 2.	Com Dete	pare and contrast between signal flow graph & Data flow graph rmine algorithm to compute iteration bound			
Unit V		Title: Practical DSP Applications	3 hrs		
1. 2.	Elab Clas	orate on how DSP processors can be used in Image enhancement sify DTMF generation and detection			

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	1
CO2	3	-	-	2	2	-
CO3	3	2	2	1	2	-
CO4	3	2	2	2	-	1
CO5	3	2	1	1	1	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Elective Course 2

Course Code: VES2410L08

Course Title: Real Time Operating System

	Evaluation Scheme								
	Т		Cr		Theory % Marks			Practical % Marks	
L		Р		Exam	Max Min for Pass			Min	
							IOF SS	Max	for Pass
3	1	0	4	$CC\Lambda$	50	20			
Total Hours			CCA	30	20	40	-	-	
39	13	0	Total: 52	ESE	50	20			

Prerequisites: Embedded System Design, Operating System

Course Objectives:

- 1. To understand software Architecture and Development cycle of Operating Systems
- 2. To learn various management attributes of Operating System
- 3. To understand RTOS
- 4. To study Linux/ RT Linux environment

Course Outcomes : After successful completion of the course the student will be able to:

CO1	Analyze Embedded Software Developments Tools
CO2	Demonstrate Life Cycle of Software Development Process
CO3	Evaluate different Monolithic systems
CO4	Design a simple RTOS kernel structure inspired by μ C/OS
CO5	Evaluate the impact of the Linux kernel's modularity on system performance and flexibility and Analyze the advantages of using semaphores over mutexes in certain synchronizationscenarios.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	List of software development tools	7 hrs					
Software A Programm Modeling Analysis,	Software Architectures, Software Developments Tools, Programming Concepts, Embedded Programming in C and C++, Queues, Stacks, Optimization of Memory needs, Program Modeling Concepts, Software Development Process Life Cycle and its Model, Software Analysis, Design and Maintenance						
Unit II	Unit IILife Cycle of Software Development Process8 hrs						
Operating Files, Secu	System Concepts, Processes, Deadlocks, Memory Management, Input /Ou urity, the Shell, Recycling of Concepts.	ıtput,					
Unit III	Monolithic Systems	8 hrs					
Operating kernels, C	system structure Monolithic Systems: Layered Systems, Virtual Machi lient-Server Model	ines, Exo-					
Unit IV	Multitasking in µCOS	8 hrs					
Real Time Manageme Manageme	Real Time Operating Systems (μ C/OS):Real-Time Software Concepts, Kernel Structure, Task Management, Time Management, Inter task Communication & Synchronization, Memory Management, and Porting μ Cos-II.						
Unit V	Linux Operating system and Semaphore for signaling and synchronization	8 hrs					
Linux/RT and Filters	Linux: Features of Linux, Linux commands, File Manipulations, Directors, File Protections, Shell Programming.	ry, Pipes					
System Pr Manageme	ogramming, RT Linux Modules, POSIX Threads, Mutex Management, Se	maphore					
Reference	e Books						
 Labros Dr Pra Dreamtec Simon Tanenl Raj Ka Hill. 	ssy J. J, Lawrence, "μC/OS-II, The real time Kernel", R & D Publication. sad K V K K, "Embedded Real Time Systems: Concepts, Design & Progra ch Publication. D. E, "An Embedded Software Primer", Pearson education. baum A S, "Modern Operating Systems", Prentice Hall. mal, "Embedded Systems Architecture, Programming and design", Tata N	mming", Ic-Graw-					

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Tutorial

Unit I	Title: List of software development tools	2 hrs				
1. Compare a	nd contrast the features of various development tools.					
2. Design em	bedded software for specific applications.					
3. Design a cu	ustom SDLC model for a specific project.					
Unit II	Title: Life Cycle of Software Development Process	2 hrs				
1. Design a	basic structure for a hypothetical operating system with essential feature	ures.				
2. Distinguis	h between a process and a thread.					
3. Identify di	fferent types of I/O devices and their roles in a computer system.					
Unit III	it III Title: Monolithic Systems					
 Analyze tl system. 	ne advantages and disadvantages of using a monolithic kernel in an op	perating				
2. Design a s	imple monolithic kernel for a hypothetical operating system.					
3. Demonstra	ate how to organize the components of an operating system into layers	5.				
Unit IV	Title: Multitasking in μCOS	3 hrs				
1. Compare t	he μ C/OS-II kernel structure with that of another RTOS.					
2. Design a t	ask management system for a real-time application using μ C/OS-II.					
3. Describe t	3. Describe the steps involved in porting μ C/OS-II to a new hardware platform.					
Unit VTitle: Linux Operating system and Semaphore for signaling and synchronization3 hr						
1. Analyze t management	he differences between the cp, mv, and rsync commands in terms of file	e				
2. Explain ho	ow the cat, less, and nano commands are used to view and edit files.					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

3. Describe the structure of a typical Linux directory hierarchy.

4. Design a pipeline that processes a log file to extract and count error messages.

5. Design an RT Linux module that handles a specific real-time task, such as precise timing control for an industrial application.

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2	3	2	-
CO2	2	2	2	3	2	2
CO3	2	2	2	1	1	-
CO4	3	2	2	2	2	1
CO5	3	3	2	1	1	-

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Category: Program Core Laboratory 2

Course Code: VES2410P01

Course Title: Laboratory Practice II

Teaching Scheme				Evaluation Scheme				
	Т	Р	Cr		Theory % Marks		Practical % Marks	
L				Exam	Max	Min for Pass	Max	Min
								for Pass
0	0	4	2	CCA	-	-	50	20
Total Hours					-	-		
0	0	52	Total: 52	ESE	-	-	50	20

Prerequisites:

1. Front End Tools and Back End Tools basics

2. C Language basics and Interfacing basics

Course Objectives:

1. To understand issues and tools related to Analog, Digital and Mixed signal design and implementation.

2. To design and develop models for various automotive control systems using model based development techniques.

3. To develop comprehensive approach towards building low cost and optimized area using FPGA/ASIC.

4. To enhance programming skills of students in the field of VLSI and Embedded systems.

Course Outcomes: After successful completion of the course the student will be able to:

CO1	Develop and Simulate various analog CMOS circuits for high frequency and high speed IC design.
CO2	Design and implement various on chip circuits like Mod 4 counter on PLD.
CO3	Implement programs to solve automotive well defined problems like ignition driver on an embedded platform.
CO4	Design a Program for various applications like ADC, DAC in front end tool to analyze various output parameters voltage, current etc. using programming languages: Matlab, Python and C.
CO5	Design a Program for various applications using back end tool to evaluate

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

parameters like VSWR using programming languages: Matlab, Python and C and Analyze and select Linux and Embedded Linux utilities with respect to real time applications.

Syllabus

02hrs

Laboratory Practice II (LP II) is companion course of theory courses (core and elective) in Semester II. It is recommended that set of assignments or at least one study project per course is to be completed. Set of problem statements are suggested. Course/ Laboratory instructor may frame suitable problem statements. Student has to submit a report/Journal consisting of appropriate documents -prologue, Certificate, table of contents, and other suitable write up like (Introduction, motivation, aim and objectives, outcomes, brief theory, requirements analysis, design aspects, algorithms, mathematical model, complexity analysis, results, analysis and conclusions).

Guidelines for CCA

07 hrs

Continuous assessment of laboratory work is done based on performance of student.

Introduction

Each assignment/ mini project assessment is to be done based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as mini project assessment include-timely completion, performance, innovation, efficient codes, usability, documentation and adhering to SDLC comprehensively

Guidelines for ESE

07 hrs

It is recommended that examination should be conducted as presentation by student based on one of the mini projects completed and the content understanding of laboratory work.

Lab practice file shall consist of following assignments/experiments

Guidelines:

- 1. Total experiments to be conducted are two from each Part: Part A to Part D
- 2. Total: 08 experiments

Detailed Syllabus:

Part A: Analog CMOS Design

9 Hrs

Expt. No.	Title
1.	To design a cascode current mirror for output current of 100 μ A. Prepare layout and simulate. Comment on output resistance.
2.	To design, prepare layout and simulate CMOS differential amplifier for CMRR of 40 dB. Comment on ICMR.
3.	To design, prepare layout and simulate multistage CMOS RF amplifier in 90 nm technology for voltage gain of 60 dB, bandwidth of 100 MHz, and source impedance of 50 Ω .

D Y Patil College of Engineering, Akurdi, Pune An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

	FY M Tech VLSI and Embedded Systems, Semester II								
4.	To design CMOS RF amplifier for voltage gain of 60 dB. Suggest and design suitable technique to enhance the bandwidth. Simulate each added technique step by step. Comment on the improvement resulted each time. Prepare layout of the final schematic and simulate.								
5.	List the sources of cross talk. Explore in detail, the existence of cross talk in each case. Explain the mitigation techniques. Prepare case study for one of them. Verify the cross talk and its mitigation through simulation.								
Part B: S	art B: System on Chip9 Hrs								
1.	Design, simulate and implement FSM on PLD for detection of either of input sequence $X = 1001$ or1101 sequence and set output flags $Y = "1"$ or $Z="1"$ respectively. What is the effect on area, speed, fan out and power by implementing this design using different state encoding styles?								
2.	Design and implement MOD4 counter or by probing logic analyzer Control bits Count update after every sec.	n PLD and verify multi-clock op	erations						
	Control bits	Count update after every sec.							
	00	0.25 sec							
	01	0.5 sec							
	10	1 sec							
11 4 sec									
	Why gated clock is not preferred in digital design? Write Verilog code to implement CMOS layout which will generate glitch also design a RTL by Write VHDL will generate glitch and also measure it using electronic test equipment								

Department of Electronics and Telecommunication

	FY M Tech VLSI and Embedded Systems, Semester II					
3.	 Implement temperature logging system as a co-design by Interfacing FPGA &μC 8051 as follows: i) LM 35 interfaced with ADC ii) ADC interfaced with FPGA iii) FPGA interfaced with μC 8051 iv) μC 8051 is interfaced with LCD 					
4.	To display real-time room temperature. If temperature is greater than 250 C Bi- colors LED should change its normal Green color to RED color via opto-isolator by actuation of relay					
Part C: E	mbedded Automotive Systems	9 hrs				
1.	Write a program for Sensing Engine Speed, Load and Temperature.					
2.	Develop a transistorized Ignition Driver.					
3.	Design a single cylinder engine Management System.					
4.	Perform a case study for any two automotive protocols.					
5.	Study the functional design aspects of Hybrid Automotive Systems.					
Part D: P	cogram Elective course experiments	9 hrs				
Embedde	l Product Design					
	1 Found Design					
1.	To estimate techno-commercial feasibility of any one embedded produc mobile phone, programmable calculator, tablet PC, biometrics system, set etc.	t such as t top box				
1. 2.	To estimate techno-commercial feasibility of any one embedded produc mobile phone, programmable calculator, tablet PC, biometrics system, set etc. To study design considerations of any one embedded product e.g. laptop, conferencing system, surveillance/ security system, EMG/ECG machine of	t such as t top box video etc.				
1. 2. 3.	To estimate techno-commercial feasibility of any one embedded produc mobile phone, programmable calculator, tablet PC, biometrics system, set etc. To study design considerations of any one embedded product e.g. laptop, conferencing system, surveillance/ security system, EMG/ECG machine To design any one embedded product to solve any real life problems.	t such as t top box video etc.				
1. 2. 3. 4.	 To estimate techno-commercial feasibility of any one embedded product mobile phone, programmable calculator, tablet PC, biometrics system, set etc. To study design considerations of any one embedded product e.g. laptop, conferencing system, surveillance/ security system, EMG/ECG machine of To design any one embedded product to solve any real life problems. To test the hardware designed for above assignment (3) using a suitable simulation tool. 	t such as t top box video etc.				
1. 2. 3. 4. 5	 To estimate techno-commercial feasibility of any one embedded product mobile phone, programmable calculator, tablet PC, biometrics system, set etc. To study design considerations of any one embedded product e.g. laptop, conferencing system, surveillance/ security system, EMG/ECG machine of To design any one embedded product to solve any real life problems. To test the hardware designed for above assignment (3) using a suitable simulation tool. To simulate the software designed for the above assignment (3) using simulation tool. 	t such as t top box video etc.				
 1. 2. 3. 4. 5 High Spee 	 To estimate techno-commercial feasibility of any one embedded produc mobile phone, programmable calculator, tablet PC, biometrics system, set etc. To study design considerations of any one embedded product e.g. laptop, conferencing system, surveillance/ security system, EMG/ECG machine of To design any one embedded product to solve any real life problems. To test the hardware designed for above assignment (3) using a suitable simulation tool. To simulate the software designed for the above assignment (3) using simulation tool. 	t such as t top box video etc.				

Department of Electronics and Telecommunication

	FY M Tech VLSI and Embedded Systems, Semester II
2.	Simulate startup model of RLC.
3.	Simulate a transmission line to evaluate VSWR, reflection coefficient parameters considering different loading considerations using analog simulation tool.
4.	Plot stability circle, for given values of S parameters.
Mixed Sig	nal IC Design
1.	Plot ideal transfer curves for 3 bit and 4 bit DAC, using $VRef = 5V$ and $3V$. Find the resolution for a DAC if the output voltage is desired to change in 1 mV increments.
2.	For 3 bit ADC, $VRef = 5V$, Plot ideal transfer curve and quantization error.
3.	Plot transfer curve and quantization error by shifting entire transfer curve of example 2, left by 1/2 LSB and calculate DNL.
4.	Design and simulate anti-aliasing filter with two input sine waves having frequencies 4 MHz and 40 MHz.
5.	Design and simulate sample and hold circuit, with 8 MHz sine wave sampled at 100 MHz.
Embedded	d Signal Processor Architectures
1.	Design and simulate N point FFT by targeting DSP processor platform.
2.	Design and simulate N tap FIR filter by targeting suitable DSP processor platform.
3.	Design and simulate LMS adaptive filter.
4.	Design a system for DTMF signal detection. Write a program to detect the DTMF signal using Goertzel algorithm
Real Time	e Operating Systems
1.	Multitasking in μ COS- II RTOS using minimum 3 tasks on ARM7. (μ COS - II based Experiments).
2.	Semaphore as signaling and synchronizing on ARM7. (μ COS - II based Experiments).
3.	Write a program for 4*4 Matrix Keypad Interface (based on Linux Operating System).
4.	Develop character device driver for GPIO (based on Linux Operating System).

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Laboratory Practice II	Total	Passing	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	1.Dynamics&Vibrations2.Design&	50	20	Refer CCA Guideline
ESE	Institute	Optimization 3. Finite Element Techniques	50	20	External Oral Examination

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2	2	1	1
CO2	3	2	2	2	1	1
CO3	3	2	2	2	1	1
CO4	2	1	1	1	1	1
CO5	1	1	1	1	1	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II

Category: Credit Course

Course Code: VES2410P02

Course Title: Skill Development Course

Teaching Scheme					Evaluation Scheme			
L	Т	Р		Exam	Theory % Marks		Practical % Marks	
			Cr		Max	Min for Pass	Max	Min
								for Pass
0	0	4	2	004			100	10
0	0	52	Total:52	CCA	-	-	100	40

Prerequisites: NIL

Course Objectives: Purposes of Course are:

- 1. Enhance Technical Expertise: Equip students with advanced technical skills and knowledge in their specific field of study, enabling them to solve complex engineering problems and contribute to innovative solutions.
- 2. Industry-Relevant Skills: Bridge the gap between academic knowledge and industry requirements by providing training in the latest tools, technologies, and methodologies used in the industry, ensuring students are job-ready upon post-graduation.
- 3. Professional Development: Develop essential soft skills such as leadership, teamwork, communication, and project management, preparing students for leadership roles in their professional careers and enhancing their overall employability.

Course Outcomes: After Successful completion of course units, students will

- CO1 Demonstrate advanced technical skills and practical knowledge in their specialized field, enabling them to effectively design, analyze, and implement complex engineering solutions using industry-standard tools and technologies.
- CO2 Exhibit strong professional skills, including effective communication, teamwork, and project management, preparing them to lead and collaborate in multidisciplinary teams within a dynamic work environment.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Modern Tools							
Overview	of	current	Industry	trends	in	Latest	and	Modern
Software/Gadget/Equipment/Concept/Procedure/Tools, Hands on Training, Integra								ating these
tools for comprehensive solutions. Applications of software.								

Unit II	Professional and Technical Communication	26 hrs

Understanding the importance of professional and technical communication, Key elements of effective communication, Hands on writing technical reports, research papers, and documentation. Structuring and formatting technical documents. Clarity, conciseness, and coherence in technical writing. Use of visual aids (charts, graphs, diagrams) in documents. Preparing and delivering technical presentations. Public speaking skills for technical contexts.

Effective use of presentation tools (e.g., PowerPoint, Canva). Communicating within a team and with stakeholders. Conducting and participating in technical meetings and discussions.

Listening skills and feedback mechanisms. Effective email communication. Utilizing digital platforms for collaboration and communication (e.g., Zoom, Microsoft Teams).

References:

- 1. "Technical Communication: Principles and Practice" by Meenakshi Raman and Sangeeta Sharma, Oxford University Press, Third Edition, 2015, New Delhi
- 2. "Professional Communication" by Aruna Koneru, Tata McGraw-Hill Education, Second Edition, 2008, New Delhi
- 3. "Effective Technical Communication" by M. Ashraf Rizvi, Tata McGraw-Hill Education, Second Edition, 2010, New Delhi
- 4. "Communication Skills for Engineers" by Sunita Mishra and C. Muralikrishna, Pearson Education India, First Edition, 2011, New Delhi
- 5. "Advanced Technical Communication" by Kavita Tyagi and Padma Misra, PHI Learning Pvt. Ltd., First Edition, 2011, New Delhi

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Total	Passing	Process Evaluation
Continuous	Faculty	50	50	100	40	Refer CCA
Comprehensive Assessment (CCA)						Guideline

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	-	3
CO2	3	2	-	3	3	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Category: Credit Course

Course Code: VES2410P03

Course Title: Industry Based Mini Project

Teaching Scheme				Evaluation Scheme				
		Р	Cr		The N	eory % Iarks	Practical % Marks	
L	Т			Exam	Max	Min for		Min
						Pass	Max	for
						1 455		Pass
0	0	4	2	CCA			TW 50	40
0	0	52	Total: 52				OR 50	40

Industry Based Mini Project involves students working on real-world projects in collaboration with industry partners. This course provides practical experience, allowing students to apply theoretical knowledge to solve industry-specific problems. It includes regular mentoring sessions, project planning, execution, and final presentations. By the end of the course, students gain valuable insights into industry practices, enhance their technical and professional skills, and improve their employability.

Prerequisites: Knowledge of Statistics, problem solving approach.

Course Objectives:

- 1. To gain practical insights into Industry specific practices, challenges and standards.
- 2. To develop critical thinking by aligning complexities of Industrial Environment.

Course Outcomes: After successful completion of the course the student will be able to						
CO1	Design, plan and execute the project which provides a viable solution or improvement related to existing solutions.					
CO2	Author findings and solution effectively through written reports and oral presentation.					

Syllabus

Task 1: Explore domain specific industry websites to identify relevant projects.

Task 2: Prepare project plan involving problem statement, objectives, methodology, intended outcomes.

Task 3: Conduction and deliver progress review presentations with results and discussions.

Task 4: Preparation and presentation of final Mini project report

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

References

- Kerzner, H. (2017). Project management: A systems approach to planning, scheduling, and controlling (12th ed.). Wiley.
- Kerzner, H. (2017). Project management case studies (5th ed.). Wiley
- Smith, N. J. (2019). Engineering project management (4th ed.). Wiley-Blackwell
- Oberlender, G. D. (2014). Project management for engineering and construction (3rd ed.). McGraw-Hill Education.

Rubrics for Continuous Evaluation

Component	Level	Level Industry Based Mini		Passing	Process
		Project			Evaluation
Continuous	Faculty	Mini project Report	50	20	Refer CCA
Comprehensive					Guideline
Assessment (CCA)					
ESE	Department	Mini project	50	20	Refer
		Presentation			Guidelines

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	2	3
CO2	3	2	2	3	2	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Category: Non Credit Course 2

Course Code: NCC2410L01

Course Title: Stress Management by Yoga

Teaching Scheme				Evaluation Scheme					
					Theory % Marks			Practical % Marks	
L	Т	Р	Cr	Exam		Min	for		Min
					Max	Pass		Max	for Pass
2	0	0	0	CCA	100	40			
26	0		Total:26			40	40	-	-

Prerequisites: Familiarity with Basic Yoga Practices, General Physical Fitness

Course Objective:

- **1.** To provide students with a thorough understanding of stress, its causes, and its effects on mental and physical health.
- **2.** To teach students various yoga practices, including asanas, pranayama, and meditation, for stress management and overall well-being.
- **3.** To enable students to incorporate the philosophical principles of yoga into their daily routines to enhance mental and physical well-being.

Cours	se Outcomes: After successful completion of the course the student will be able to
CO1	Comprehend stress sources and yoga's role.
CO2	Demonstrate mastery in yoga techniques.
CO3	Apply yoga philosophy to stress management.
CO4	Incorporate yoga for long-term well-being.

Syllabus

Unit I	Introduction to Stress and Yoga	7					
Understanding Stress: Types, causes, and impacts							
Introductio	Introduction to Yoga: Definition, history, and paths (Raja, Karma, Bhakti, Jnana)						
Connection	Connection between Stress and Yoga: role of Yoga in stress reduction						
Unit II	Yoga Practices for Stress Management						
Asanas (Postures): Basic stress-relieving asanas (e.g., Shavasana, Balasana)							
Pranayama (Breathing Techniques): Techniques like AnulomVilom, Bhramari, Nadi Shodhana							
Meditation and Relaxation: Mindfulness meditation, guided imagery, progressive relaxation							

Department of Electronics and Telecommunication

	FY M Tech VLSI and Embedded Systems, Semester II	
Unit III	Philosophical Foundations of Yoga	6
Yoga Philo	osophy: Eight limbs of yoga	
Mind-Bod	y Connection: Psychosomatic health in yoga	
Lifestyle a	nd Diet: Yogic lifestyle, Sattvic diet	
Unit IV	Applied Yoga for Stress Management	6
Yoga Ther	apy: Personalized yoga routines for stress	
Case Studi	es: Real-life applications and analysis	
Integrating	g Yoga into Daily Life: Practical tips for daily practice	
Reference	e Books	
Text Boo	oks	
1. The Yo	oga Sutras of Patanjali, by Swami Satchidananda	
2. Light	on Yoga, by B.K.S. Iyengar	
3. The H	leart of Yoga, by T.K.V. Desikachar	
Reference Journals a Complem	e Books and Articles: International Journal of Yoga, Journal of Alternative and mentary Medicine	
Web Ref Yoga Allia	erences ance	
Internation	nal Association of Yoga Therapists National Portal of India	

Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous	Faculty	25	25	25	25	100	40	Refer CCA
Comprehensive								Guideline
Assessment (CCA)								

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	1	2
CO2	-	2	2	-	2	3
CO3	2	1	2	2	-	3
CO4	2	-	3	2	2	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Category: Non Credit Course 2

Course Code: NCC2410L02 Course Title: Personality Development through Life Enlightenment Skills

Teaching Scheme				Evaluation Scheme						
	Т	Р		Exam	Theory % Marks			Practical % Marks		
L			Cr			Min	fan		Min	
					Max	Pass	lor	Max	for Pass	
2	0	0	0	CCA	100	40				
26	0		Total:26			40	40	-	-	

Prerequisites:

1. Basic Anatomy and Physiology

2. Introduction to Psychology

3. Familiarity with Basic Yoga Practices

- 4. General Physical Fitness
- 5. Interest in Holistic Health Approaches

Course Objective :

- 1. To cultivate essential skills that contribute to personal development and self-awareness.
- 2. To train students with the tools and techniques necessary for professional growth and career advancement.
- 3. To foster a balanced approach to life by integrating principles that support physical, mental, and emotional well-being.

Course Outcomes: After successful completion of the course the student will be able to

CO1	Understand and reflect on their own values, beliefs, and emotions, fostering greater emotional intelligence for personal and professional contexts.
CO2	Develop students ability to communicate effectively in various settings and build
	strong amountational tionships through advanced intermentanal techniques
	strong, empathetic relationships through advanced interpersonal techniques.
CO3	Prepare students to lead with confidence and integrity, understanding different
	leadership styles and enhancing their ability to work effectively in teams and solve
	problems collaboratively.
CO4	Encourage a commitment to lifelong learning and ethical conduct, providing strategies
	for career advancement, personal branding, and continuous self-improvement.
	i for earder advancement, personar cranana, and continuous sen improvement.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Syllabus

Unit I	Self-Awareness and Emotional Intelligence	7						
<i>Understanding Self:</i> Exploration of self-concept, values, and beliefs to cultivate self-awareness.								
<i>Emotional Intelligence (EI):</i> Development of EI competencies including self-awareness, self-regulation, empathy, and social skills.								
<i>Self-Management:</i> Techniques for setting and achieving personal goals, managing time effectively, and coping with stress.								
Unit II	Communication and Interpersonal Skills	7						
<i>Effective</i> C verbal, not	<i>Communication:</i> Principles of clear and persuasive communication, includin-verbal, and written communication.	ng						
<i>Interperso</i> conflict re	Interpersonal Relationships: Strategies for building and maintaining healthy relationships, conflict resolution, and active listening.							
<i>Public Spe</i> captivate a	<i>Public Speaking:</i> Techniques to overcome stage fright, structure engaging speeches, and captivate an audience.							
Unit III	Leadership and Teamwork	6						
<i>Leadership Styles:</i> Exploration of different leadership styles such as transformational, transactional, and servant leadership.								
<i>Team Dynamics:</i> Understanding group behavior, fostering collaboration, and resolving conflicts within teams.								
Decision Making and Problem Solving: Development of critical thinking skills, decision- making models, and problem-solving strategies.								
Unit IV	Personal Growth and Professional Development	6						
<i>Career Planning:</i> Tools and techniques for setting career goals, personal branding, and navigating the job market.								
<i>Continuous Learning:</i> Strategies for lifelong learning, staying abreast of industry trends, and acquiring new skills.								
<i>Ethics and Values:</i> Exploration of ethical considerations in professional contexts, integrity, and responsible citizenship.								
Reference Books								
Text Books 1. Emotional Intelligence 2.0, by Travis Bradberry and Jean Greaves								
2. How to Win Friends and Influence People, by Dale Carnegie								
3. The 7 Habits of Highly Effective People, by Stephen R. Covey								

4. Leaders Eat Last, by Simon Sinek

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Reference Books

Journals and Articles:

Journal of Personality and Social Psychology

Harvard Business Review

Web References

TED Talks on leadership, communication, and personal development

Harvard Business Review articles on emotional intelligence and leadership

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passin g	Process Evaluation
Continuous	Faculty	25	25	25	25	100	40	Refer CCA
Comprehensive								Guidalina
Assessment (CCA)								Guidelille

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	-	3	3	1	2
CO2	3	3	2	-	2	3
CO3	3	1	2	2	-	3
CO4	3	3	-	2	2	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Category: Non Credit Course 2

Course Code: NCC2410L03

Course Title: Intellectual Property Rights (IPR)

Teaching Scheme				Evaluation Scheme					
	Т	Р	Cr	Exam	Theory % Marks			Practical % Marks	
L						Min for Pass		Max	Min
					Max				for Pass
2	0	0	0	CCA	100	40			
26	0		Total:26			40	40	-	-

Prerequisites:

Students should have a foundational understanding of legal principles, a strong technical background in their field, research and analytical skills, and proficiency in communication.

Course Objective:

- **1.** To provide students with a comprehensive understanding of the basics of intellectual property rights, including patents, trademarks, copyrights, and trade secrets.
- **2.** To educate students on the legal frameworks governing IPR and the detailed procedures involved in securing patents.
- **3.** To engage students in the examination of current issues and challenges in the field of intellectual property rights, particularly in relation to technology and innovation.

Course Outcomes: After successful completion of the course the student will be able to

CO1	Explain the fundamental concepts and significance of various types of intellectual property rights.
CO2	Gain the ability to navigate the patent application process, conduct patent searches,
	and understand patent infringement and litigation procedures.
CO3	Acquire the skills to register, protect, and enforce trademarks and copyrights.
	including understanding their digital applications.
CO4	Develop an understanding of current and emerging trends in IPR, including issues
	related to trade counts histochicleary competition law, and the impact of new
	related to trade secrets, biotechnology, competition law, and the impact of new
	technologies

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II Syllabus

Unit I	Introduction to Intellectual Property Rights							
Fundamen	tals of Intellectual Property: Definition and nature of intellectual	property,						
Importance	e of intellectual property in innovation and technology. Types of ir	tellectual						

Importance of intellectual property in innovation and technology, Types of intellectual property: patents, trademarks, copyrights, trade secrets.

International Framework for Intellectual Property: Overview of international IPR agreements (TRIPS, WIPO), Role of international organizations in IPR, Comparison of IPR laws in different countries.

Intellectual Property Laws in India: Historical background of IPR laws in India, Key IPR legislations in India (Patent Act, Trademark Act, Copyright Act, etc.), Government bodies and agencies involved in IPR protection and enforcement.

Unit II	Patents	8
D	~	

Basics of Patents: Definition and criteria for patentability, Types of patents (utility patents, design patents, plant patents), Patent application process and documentation.

Patent Search and Analysis: Techniques for conducting patent searches, Tools and databases for patent information, Patent mapping and analysis for research and development.

Patent Infringement and Litigation: Understanding patent infringement, Remedies for patent infringement (legal actions, damages), Case studies of patent infringement and litigation.

Patent Licensing and Commercialization: Strategies for patent licensing and technology transfer, Valuation of patents and negotiation techniques, Case studies on successful patent commercialization.

Unit III	Trademarks and Copyrights	6

Trademarks: Definition and types of trademarks, Process of trademark registration, Protection of trademark rights and enforcement, Case studies on trademark disputes and resolutions.

Copyrights: Definition and scope of copyrights, Works eligible for copyright protection, Process of copyright registration, Copyright infringement and remedies.

Digital Intellectual Property: Protection of intellectual property in the digital age, Issues related to digital rights management (DRM), Legal aspects of software and internet-related intellectual property.

Unit IV Emerging Trends and Issues in IPR

6

Trade Secrets and Confidential Information: Definition and importance of trade secrets, Protection of trade secrets, Legal remedies for misappropriation of trade secrets.

IPR and Competition Law: Interaction between IPR and competition law, Anti-competitive practices and abuse of IPR, Case studies on IPR and competition law conflicts.

Current Trends and Future Directions: Impact of artificial intelligence and machine learning on IPR, IPR issues in emerging technologies (nanotechnology, IoT), Future trends in IPR protection and management..

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

FY M Tech VLSI and Embedded Systems, Semester II

Books

Text Books

1. Intellectual Property Rights: Unleashing the Knowledge Economy, by Prabuddha Ganguli

2. Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets, by Deborah E. Bouchoux

3. Patent Law and Policy: Cases and Materials, by Robert Patrick Merges, John Fitzgerald Duffy

4. The Law of Intellectual Property, by Craig Allen Nard, Michael J. Madison, and Mark P. McKenna

Reference Books

- 1. Intellectual Property Rights in the Global Economy, by Keith E. Maskus
- 2. Intellectual Property and Business: The Power of Intangible Assets, by Rodney D. Ryder

Web References

- 1. <u>https://onlinecourses.nptel.ac.in/noc22_hs59/preview</u>
- 2. https://archive.nptel.ac.in/courses/110/105/110105139/
- 3. https://dst.gov.in/sites/default/files/E-BOOK%20IPR.pdf

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune Department of Electronics and Telecommunication

FY M Tech VLSI and Embedded Systems, Semester II Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Total	Passing	Process Evaluation
Continuous	Faculty	25	25	25	25	100	40	Refer CCA
Comprehensive Assessment (CCA)								Guideline

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	-	2
CO2	-	3	2	2	2	3
CO3	3	2	2	2	3	-
CO4	3	3	-	2	2	2

3: High, 2: Moderate, 1: Low, 0: No Mapping
