

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Syllabus Structure

		Tea	chin	g Sch	eme		Evalı	uatior	Sche	me			
Course Code	Course									Theory % Marks		Practical % Marks	
Course Code	Course	L	T	P	Cr	Exam		Min	for		Min		
							Max	Pa		Max	for Pass		
VES2411P01	Dissertation Phase I	0	0	8	4	CCA	-		-	100	40		
VES2411P02	Dissertation Phase II	0	0	8	4	CCA	-	-		50	40		
		,	,	,		ESE	-		-	50			
XXX2411L01	Open Elective	4	0	0	4	CCA	50	20	40	-	-		
XXX2411L01	Open Elective	4	U	U	4	ESE	50	20	40	ı	-		
VES2411P03	On Job Training/Internship	0	0	20	10	CCA	ı	-		100	40		
	Total 4 0 36 22												

Course Code	Open Elective
MDE2411L01	3 D Printing
CME2411L01	Soft Computing
CTM2411L01	Project Management & Finance
ENE2411L01	Environment and Sustainability
RNA2411L01	Robotics & Automation
VES2411L01	Optimization Techniques

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Category: Dissertation Phase

Course Title: Dissertation Phase I Course Code: VES2411P01

	Teaching Scheme				Evalua	tion S	Sche	me		
						Theory % Practica Marks Mark				
L	T	P	Cr	Exam		Min	Min for Pass		Min	
					Max				for Pass	
0	0	8	4	CCA	-			100	40	
0	0	104	Total: 104	ESE	-	_	-	100	40	

Prere	Prerequisites: Completion of all 4 semesters			
Cour	Course Objectives:			
To pr	To prepare the synopsis of the dissertation			
Cour	Course Outcome: After successful completion of the course the student will be able to			
CO1	Construct the Synopsis on the Dissertation topic considering Statement of Problem,			
	Significance, Objective, Hypothesis and Methodology.			
CO2	Demonstrate the Synopsis on the Dissertation topic with Classified Literature Review,			
	Rationale, Research Question, Time Frame, Budget and References.			

Unit I	Synopsis Submission	70 hrs
1.	Introduction (1 Page): Provide a brief overview of the theories and models reyour topic.	levant to
2.	Literature Review (2-4 pages): Summarize relevant and related research in claway	assified
3.	Statement of the Problem (1 Page): Identify research gaps based on the L Review and justify the conduct of the study	Literature
4.	Significance/Rationale (1/2 Page): Explain the importance and contribution findings	n of the
5.	Objectives: List the objectives (min 4) (1/2 page)	
6.	Hypotheses/Research Questions: State your expectations from the disserta page)	tion (1/2
7.	Methodology: Specify whether the project is Experimental, Theoretical/Math Modelling, Survey based, or a combination, Design of Experiment (DoE), Des strategy and framework proposed, Indicate if the approach is quantitate qualitative, or mixed methods. (1 Page)	scribe the

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

- 8. Time Frame of Dissertation: Provide timeline of the work
- 9. Budget: Provide Budget (if required)
- 10. List of References

10.215					
Unit II	Submission of Synopsis and its Presentation	30hrs			
Student is	Student is required to present his/her synopsis in front of Committee of the Department				

Rubrics for Continuous Evaluation

	Rubrics for CCA (100)				
No	Component	Marks			
1	Complete Submission of Synopsis in hard copy of 5 sets	70			
2	Seminar presentation on Synopsis	30			

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Category: Dissertation Phase

Course Title: Dissertation Phase II Course Code: VES2411P02

	Teaching Scheme				Evalua	tion S	Schei	me	
						Theory % Practic Marks Mark			
L	T	P	Cr	Exam		Min	Min for Pass Max		Min
					Max				for Pass
									rass
0	0	8	4	CCA	-			50	40
-	0	104	Total: 104	ESE	-	_	-	50	40

Prere	Prerequisites: Submission of Synopsis				
Cour	Course Objectives:				
To pro	To present the dissertation work				
Cour	Course Outcome: After successful completion of the course the student will be able to				
CO1	Construct the Synopsis on the Dissertation topic considering Statement of Problem, Significance, Objective, Hypothesis and Methodology.				
000	0 11 01				
CO ₂	Demonstrate the Synopsis on the Dissertation topic with Classified Literature Review,				
	Rationale, Research Question, Time Frame, Budget and References.				

Unit I	Submission of Report	70 hrs		
1. Int	roduction			
2. Lit	erature Review			
3. Sta	tement of the Problem			
4. Sig	mificance/Rationale			
5. Ob	jectives			
6. Hy	potheses/Research Questions			
7. Me	thodology			
8. Re	sults and Discussions			
9. Su	mmary of Objectives Completed (50 % should complete)			
10. Lis	t of References			
Unit II	Submission of Report and its Presentation	30 hrs		
Student is required to present his/her work in front of Internal and External Committee of the				
Departmen	nt entre			

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Rubrics for Continuous Evaluation

	Rubrics for CCA and ESE (100)				
No	Component	Marks			
1	Complete Submission of Report in hard copy	70			
2	Presentation on the work in front of Internal and External Committee	30			
	appointed by Department.				

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

Category: Open Elective

Course Code: VES2411L01 Course Title: Optimization Techniques

	Teaching Scheme				Evaluation Scheme				
			Theory		Theory % Marks		ks Practical Marks		
L	T	P	Cr	Exam		Min	Min for		Min
					Max	Min for Pass		Max	for Pass
3	1	0	4	CCA	50	20			
	Total	Hours		CCA	30	40		-	-
39	13	0	Total: 52	ESE	50	20			

Prerequisites: linear algebra, vector calculus, ordinary differential equations, and Probability

Course Objectives:

- **1.** To comprehend, anticipate, and formulate the design problem using mathematical Modeling.
- **2.** To search for solutions to reach the best objective under certain constraints in all Engineering areas.
- **3.** To maximize or minimize the numerical value for optimizing operations (objective function) with some linear and non-linear constraints.
- **4.** To optimize a problem iteratively trying to improve a candidate solution with regard to a given measure of quality.

Cour	Course Outcomes: After successful completion of the course the student will be able to:						
CO1	Formulate the design problem using mathematical Modeling.						
CO2	Search for solutions to reach the best objective under certain constraints in all Engineering areas.						
CO3	Compute the linear and non-linear programming through various optimization techniques.						
CO4	Analyze and appreciate variety of performance measures for various optimization problems.						
CO5	Formulate and design topology and Evolutionary based Structural Optimization to get optimum structural shape and layout.						

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Unit I	Title: Introduction to Mathematical Modeling	7 hrs				
and Constr	Introduction to Mathematical Modeling, Types of Modeling. Objective function; Constraints and Constraint surface; Mathematical modeling characteristics and limitations, Formulation of design problems.					
Unit II	Title: Classical Optimization Techniques	8 hrs				
variable or	Engineering applications of optimization, classification of optimization problem, single variable optimization, multi variable optimization with no constraint, equality constraint, inequality constraint					
Unit III	Title: Linear and Non-Linear Programming	8 hrs				
Sensitivity One-dimer	Simplex algorithm, two phases of the simplex method, Primal-dual simplex method, Sensitivity or post optimality analysis, applications in engineering. One-dimensional minimization - exhaustive search, golden section method, quasi-newton					
Unit IV	andom search methods, Powell's method Title: Modern Methods of Optimization	8 hrs				
	lgorithms, Simulated Annealing, Particle Swarm Optimization, Ant on, Teaching Learning Based Optimization, Introduction to ANN	Colony				
Unit V	Title: Topology and Evolutionary Structural Optimization	8 hrs				
as a desig	Problem formulation and parameterization of design, solution methods, topology optimization as a design tool, combining topology and shape design, ESO Based on Stress Level, evolutionary methods, two-bar frame, Michell type structure, ESO for stiffness or displacement optimization					
Reference	Books					
1. Structur Publishers	al Optimization, Raphael T. Haftka and Zafer Gurdal, Kluwer Academic					
2. Practical Springer	l Optimization Methods with Mathematical Applications, M. Asghar Bhatt	t i,				
3. Topology Optimization – Theory, Methods and Applications, M. P. Bendse, Q. Sigmund						
	4. Evolutionary Topology Optimization of Continuum Structures, Methods and Applications, X. Huang, Y.M. Xie, Wiley, 2010					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

- 5. Engineering Optimization: Theory and Practice, Singiresu S. Rao, John Wiley & Sons
- 6. Mathematical Modelling, J N Kapur, New age international publication
- 7. Optimization for engineering design, K. Deb, PHI
- 8. Optimization concepts and applications in engineering, Belegundu, Chandrupatla, Pearson Education.

Tutorial

Unit I	Title: Introduction to Mathematical Modeling	3 hrs

Q.1 Formulation of Design Problems Using Mathematical Models

Given a manufacturing company is looking to optimize its production process for maximum profit. The company produces two products, **A** and **B**, using limited resources. The production of each product requires time on two machines, Machine 1 and Machine 2. The time required for each product on both machines, along with the available machine hours, is as follows:

Product	Machine 1 (hours)	Machine 2 (hours)	Profit per unit
Α	3	4	40
В	2	3	30

The available hours for Machine 1 and Machine 2 are 24 hours and 18 hours per day, respectively.

(a) Formulate the problem as a mathematical optimization model.

- Define the decision variables.
- Write the objective function to maximize the total profit.
- Write the constraints on the availability of machine hours.
- Discuss the characteristics and limitations of this mathematical model.

O.2 Understanding Objective Functions, Constraints, and Modeling Characteristics

Consider a problem where an agricultural company is determining the optimal mix of two types of fertilizers, **F1** and **F2**, to maximize crop yield. Each type of fertilizer provides a different increase in yield per hectare, but they also require a limited budget and land availability. The characteristics of the fertilizers are as follows:

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

Fertilizer	Yield per hectare (kg)	Cost per hectare (USD)
F1	200	50
F2	300	60

The company has a total budget of 3,000 USD and 20 hectares of land available for fertilizer application.

- (a) Write the mathematical model for this optimization problem.
 - Define the decision variables.
 - Write the objective function to maximize the crop yield.
 - Write the constraints based on the budget and land availability.
- (b) Explain how the objective function and constraints affect the formulation of this mathematical model. Discuss the modeling characteristics (such as linearity, convexity, etc.) and limitations (e.g., assumptions about uniformity in yield and costs) in the context of this problem.

Unit II Title: Classical Optimization Techniques 3 hrs

Q.1 Single Variable Optimization (No Constraints)

An engineer is designing a cylindrical tank and wants to minimize the surface area for a given volume. The volume of the tank is fixed at 1000 cubic meters. The surface area AAA of a cylinder is given by:

$$A = 2\pi r^2 + 2\pi rh$$

where r is the radius and h is the height of the cylinder. Using the constraint $V = \pi r^2 h = 1000$, express the surface area as a function of r only and find the value of r that minimizes the surface area.

- (a) Derive the surface area function in terms of r.
- (b) Find the radius r that minimizes the surface area.
- Q.2 Multi-variable Optimization with No Constraints

An engineer is designing a box with a square base and open top. The material used for the box costs \$2 per square meter for the base and \$1 per square meter for the sides. Let the side length of the square base be xxx meters and the height of the box be h meters. The volume of the box must be 100 cubic meters.

- (a) Express the cost function for the material as a function of x and h.
- (b) Use the volume constraint V=x2h=100 to eliminate h and find the cost function in terms of x alone.
- (c) Find the value of x that minimizes the cost of material.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

Unit III	Title: Linear and Non-Linear Programming	3 hrs
----------	--	-------

Q.1 Linear Programming and Simplex Method

A company manufactures two products, **P1** and **P2**, which require two types of resources: **R1** and **R2**. The resource availability and requirements are as follows:

Resource	Product P1 (units)	Product P2 (units)	Availability
R1	3	2	12
R2	4	3	18

The profit per unit of **P1** is \$4, and the profit per unit of **P2** is \$5.

(a) Formulate the problem as a linear programming problem.

- Define the decision variables.
- Write the objective function to maximize profit.
- Write the constraints based on the resource limitations.

(b) Solve the linear programming problem using the Simplex method.

- Set up the initial simplex tableau.
- Apply the two-phase simplex method if necessary.
- Find the optimal solution and interpret the results.

(c) Discuss the applications of sensitivity analysis in this problem. How would changes in the availability of resources (R1 or R2) affect the optimal solution?

Q.2 Non-Linear Programming and One-Dimensional Minimization

An engineer is optimizing the temperature of a heat treatment process, where the timedependent temperature T(t) is modeled as a non-linear function of time. The temperature is given by:

$$T(t) = t^2 - 6t + 11$$

The engineer wants to minimize the temperature function over the time interval $t \in [0,5]$.

(a) Use the Golden Section Method to find the minimum temperature in the given interval.

- Explain the steps involved in the Golden Section method.
- Perform the necessary calculations to find the minimum point.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

- (b) Discuss the application of Quasi-Newton methods in solving non-linear optimization problems like the temperature optimization. What advantages do these methods have over traditional methods like exhaustive search?
- (c) Explain how the Powell's method could be applied to a multi-variable optimization problem in an engineering design context, and discuss its potential benefits compared to gradient-based methods.

Unit IV	Title: Modern Methods of Optimization	2 hrs

Q.1 Genetic Algorithms and Simulated Annealing

You are tasked with optimizing the design of a mechanical component to minimize the material usage while adhering to certain constraints (e.g., weight, strength). The objective function and constraints are complex, and traditional methods are not effective.

- (a) Briefly explain how Genetic Algorithms (GA) can be used to solve this optimization problem. Highlight the key components of a GA (such as selection, crossover, and mutation).
- (b) Compare Simulated Annealing (SA) with Genetic Algorithms (GA) in terms of their working principles and suitability for solving optimization problems with complex objective functions.
- Q.2 Particle Swarm Optimization and Ant Colony Optimization

A civil engineering company is looking to optimize the layout of an urban road network to minimize congestion while considering traffic flow, safety, and construction costs.

- (a) Explain the basic concept of Particle Swarm Optimization (PSO). How can PSO be applied to optimize the layout of road networks?
- (b) Describe how Ant Colony Optimization (ACO) can be applied to solve optimization problems in transportation or logistics. Provide an example of its potential application in an engineering context.

Q.1 Topology Optimization and Design Parameterization

You are tasked with optimizing the design of a **two-bar frame** structure to minimize its weight while maintaining structural strength. The design is parameterized using the cross-sectional areas of the bars.

- (a) Explain how Topology Optimization can be used to determine the optimal distribution of material in the two-bar frame. What are the key steps involved in the optimization process?
- (b) Discuss how evolutionary methods can be applied to improve the design further, particularly when considering constraints on displacement and stress levels.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

Q. 2 ESO and Structural Optimization

A mechanical engineer is using **Evolutionary Structural Optimization** (**ESO**) for stiffness optimization in a structure. The engineer aims to reduce the structure's material usage while ensuring that the stiffness is above a certain threshold.

- (a) Describe the basic working principle of ESO based on stress level. How does this method help in removing inefficient material from the structure?
- (b) Explain the concept of Michell-type structures and discuss how ESO can be applied to optimize such structures for stiffness or displacement.

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Rubrics for Continuous Evaluation

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Process Evaluation
Continuous Comprehensive Assessment (CCA)	Faculty	10	10	10	10	10	50	Refer CCA Guideline
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	Each Unit Carries 10 marks Question

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	2	1
CO2	3	2	2	3	2	1
CO3	3	2	2	3	2	1
CO4	3	2	2	3	2	1
CO5	3	2	2	3	2	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester III

Category: On Job Training

Course Code: VES2411P03 Course Title: On Job Training/Internship

	Teaching Scheme				Evaluation Scheme				
						Theory % Marks			ical % ırks
L	T	P	Cr	Exam		Min	for.		Min
					Max	Pas		Max	for Pass
0	0	20	10	CCA	-			100	40
-	0	60	Total: 60	ESE	-	_	-	-	40

Prerequisites:	NIL
Course Object	ivoc

Unit I

- 1. To Investigate Different Industries and Career Paths
- 2. To Develop a Professional Network

Internship

- 3. To Apply Academic Knowledge in a Professional Setting
- 4. To Enhance Time Management and Communication Skills
- 5. To Increase Employment Opportunities

Course Outcome: After successful completion of the course the student will be able to

CO1 Investigate Various Industries and Employability Opportunities through Internship.

CO2 Develop Professional Network through effective communication.

Syllabus

60hrs

	F	0 0 0
The studer	nt is expected to complete an internship in an industry related to the PG	program,
working at	least 6 hours a day for a minimum of 3 weeks. This internship should ta	ake place
after the	end of Semester II and before the commencement of Semester III,	after the
examination	ons. The evaluation will be carried out in Semester III. The student must	submit a
daily repor	t electronically to his/her supervisor. At the end of the internship, the stu	dent will
submit a co	omprehensive final report.	

Unit II	Submission of Report on Internship	-hrs

Student is required to submit report on internship work to his/her supervisor.

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester III

Rubrics for Continuous Evaluation

	Rubrics for CCA and ESE (100)					
No	Component	Marks				
1	Progressive Weekly Assessment of Internship work (25 x 3 weeks)	75				
2	Complete Submission of Internship Report in hard copy	25				

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester IV

Syllabus Structure

		Tea	achin	g Sche	eme		Evalu	valuation Sch		neme			
Course Code	Course						Theory % Marks		Prac % M				
Course Code	Course	L	T	T	LT		Cr	Exam	am		Min for		Min
							Max	Pass		Max	for Pass		
VES2412P01	Dissertation Phase III	0	0	20	10	CCA	-	-	-	100	40		
VECQ410D00	D' ((M IV	0	0	24	10	CCA	-			50	20		
VES2412P02	Dissertation Phase IV	0	$0 \mid 0$	24	12	ESE	-	-	-	50	20		
	0	0	44	22									

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester IV

Category: Dissertation Phase

Course Code: VES2412P01 **Course Title: Dissertation Phase III**

	Teaching Scheme				Evaluation Scheme						
					Theory % Marks						
L	T	P	Cr	Exam	Max Min for Pass M				Min		
											for Pass
0	0	20	10	CCA	-			100	40		
0	0	260	Total: 260	ESE	-	_	1	100	40		

Prere	equisites: Completion of DP II
Cour	se Objectives:
To pr	repare the report of the dissertation work
Cour	se Outcome: After successful completion of the course the student will be able to
CO1	Construct the Progress Report on the Dissertation topic major focusing onSummary of
	Objectives Completed and Findings with discussions.
CO2	Demonstrate the Progress Report on the Dissertation topic with major findings and
	their discussions.

Unit I	Submission of Progress Report	70 hrs				
1. Introduction						
2. Lit	erature Review					
3. Sta	tement of the Problem					
4. Sig	nificance/Rationale					
5. Ob	jectives					
6. Hy	potheses/Research Questions					
7. Me	ethodology					
8. Res	sults and Discussions					
9. Su	mmary of Objectives Completed (More than 75 % should complete)					
10. Lis	t of References					
Unit II	Submission of Progress Report and its Presentation	30 hrs				
Student is required to present his/her synopsis in front of Committee of the Department						

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester IV

Rubrics for Continuous Evaluation

	Rubrics for CCA (100)				
No	Component	Marks			
1	Submission of Report in hard copy	70			
2	Presentation on Dissertation Work	30			

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

Unit I

D Y Patil College of Engineering, Akurdi, PuneAn Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune **Department of Electronics and Telecommunication**

SY M Tech VLSI and Embedded Systems, Semester IV

Category: Dissertation Phase

Course Code: VES2412P02 Course Title: Dissertation Phase IV

Teaching Scheme				Evaluation Scheme							
L	Т	P	Cr	Exam	Theory % Marks		Practical % Marks				
					Max	Min for		Max	Min		
						Min for Pass	for Pass				
0	0	8	4	CCA	-			50			
-	0	104	Total: 104	ESE	-		- -	-	- -	50	40

Prere	Prerequisites: Completion of DP III					
Cour	Course Objectives:					
To pr	To prepare the final report of the dissertation work					
Cour	Course Outcome: After successful completion of the course the student will be able to					
CO1	CO1 Construct the Final Report on the Dissertation major focusing on Summary of					
	Objectives Completed and Findings with discussions.					
CO2	CO2 Demonstrate the Final Report on the Dissertation with major findings and their					
	discussions.					

Syllabus

70 hrs

Submission of Final Report

	Submission of Final Report	70 III S					
1. Inti	1. Introduction						
2. Lite	2. Literature Review						
3. Sta	tement of the Problem						
4. Sig	4. Significance/Rationale						
5. Ob	5. Objectives						
6. Hy	6. Hypotheses/Research Questions						
7. Me	thodology						
8. Res	sults and Discussions						
9. Sui	mmary of Objectives Completed (100 % should complete)						
10. Lis	t of References						
11. Lis	t of Papers Published						
12. Vit	12. Vita						
Student is expected to publish a paper in the SCI/SCOPUS indexed Journal and Present the work in reputed conferences on his/her dissertation work.							
Unit II	Unit II Submission of Final Report and its Presentation 30 hrs						

Student is required to present his/her work in front of Internal and External Committee of the

Department of Electronics and Telecommunication

SY M Tech VLSI and Embedded Systems, Semester IV

Department

Rubrics for Continuous Evaluation

Rubrics for CCA and ESE (100)					
No	Component	Marks			
1	Complete Submission of Final Report in hard copy (4 Sets)	70			
2	Presentation on the final work in front of Internal and External Committee	30			
	appointed by Department.				

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2

3: High, 2: Moderate, 1: Low, 0: No Mapping