
An Autonomous Institute from AY 2024-25 affiliated to Savitribai Phule Pune University

Curriculum Structure and Syllabus First Year Engineering (2024 Pattern)

(With effect from Academic Year 2024-25)

National Education Policy (NEP) based Curriculum

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Preface

D Y Patil College of Engineering, Akurdi, Pune (DYPCOE) has been recognized for providing quality education in Maharashtra for the past 40 years. With a commitment to academic excellence and a vision for the future, DYPCOE is now boarding a new journey towards Autonomy, in line with the latest educational reforms. The Institute is dedicated to the effective implementation of the New Education Policy (NEP) 2020, as per the guidelines by the Government of Maharashtra. This initiative is aimed at fostering the holistic development of our students, ensuring they are well-equipped to meet the challenges of the 21st century.

The present syllabus details the first-year engineering (FY) syllabus, meticulously designed to align with the NEP 2020 and effective from the academic year 2024-25. The curriculum is structured to provide a robust foundation through Basic Science Courses and Engineering Science Courses. It also integrates Vocational and Skill Enhancement Courses, Ability Enhancement Courses, the Indian Knowledge System, and co-curricular Liberal Learning courses. This comprehensive approach aims to cultivate well-rounded engineers who are adaptable to Internationalization.

One of the key highlights of this syllabus is its emphasis on Experiential Learning and handson experience. By integrating theoretical knowledge with practical laboratory sessions, we aim to enhance the learning process and foster a deeper understanding of core concepts. Additionally, the curriculum promotes research and innovation by encouraging students to engage in project-based learning.

The development of this curriculum has been a collaborative effort, and we owe a debt of gratitude to all those who have contributed to its creation. Our sincere thanks go to the Management, Steering Committee Members, Heads of Departments, and the Board of Studies chairpersons and members for their invaluable input and dedication. Their collective expertise and commitment have been instrumental in shaping this curriculum.

We are confident that this new curriculum will pave the way for our students to achieve academic excellence and holistic development, preparing them to thrive in an ever-evolving global landscape.

Dr.Mrs. P. Malathi

Principal

Programs Offered in Bachelor of Technology (B Tech)

- 1. Artificial Intelligence and Data Science
- 2. Civil Engineering
- 3. Computer Engineering
- 4. Electronics and Telecommunication Engineering
- 5. Information Technology
- 6. Instrumentation and Control Engineering
- 7. Mechanical Engineering
- 8. Robotics and Automation

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Abbreviations and Definitions

NEP: National Education Policy

PEO: Program Educational Objectives

PO: Program Outcomes

PSO: Program Specific Outcomes

CO: Course Outcomes

BSC: Basic Science Courses

ESC: Engineering Science Courses

VSEC: Vocational and Skill Enhancement Courses

AEC: Ability Enhancement Courses

CC: Co-Curricular Courses

IKS: Indian Knowledge System

HSSM: Humanities Social Science and Management

PCC: Program Core Course

CCE: Continuous Comprehensive Evalution

ESE: End Sem Examination Cr: Credits

L: Lecture T: Tutorial

P: Practical

FY: First Year SY: Second Year TY: Third Year BY: Final Year

Group A: Computer, IT and AIDS

Group B: ETC, Instrumentation and Robotics and Automation,

Group C: Civil and Mechanical

Group I: Civil, Mech, Robotics and Automation, Instrumentation

Group II: Computer, IT, AIDS, ETC,

Cycle I: Computer, IT and AIDS

Cycle II: Civil, Mech, Robotics and Automation, ETC, Instrumentation

Index

Sr No	Description	Page No
1	Preface	i
2	Programs Offered in Bachelor of Technology (B Tech)	ii
3	Abbreviations and Definitions	iii
4	Index	iv
5	Curriculum Structure Semester I	V
6	Curriculum Structure Semester II	vi

Detailed Syllabus

Sr No	Course Code	Detailed Syllabus Course Title	Page No
1.	BSC2401L01	Engineering Physics (Group A)	1
2.	BSC2402L02	Engineering Physics (Group B)	4
3.	BSC2402L03	Engineering Physics (Group C)	7
4.	BSC2401P07	Engineering Physics Lab (Group A, B and C)	10
5.	BSC2401L09	Linear Algebra and Differential Calculus (Group A)	12
6.	BSC2401L10	Linear Algebra & Differential Calculus (Group B)	14
7.	BSC2401L11	Linear Algebra & Differential Calculus (Group C)	16
8.	ESC2401L01	Applied Mechanics (Group I)	18
9.	ESC2402L02	Applied Mechanics (Group II)	21
10.	ESC2401P04	Applied Mechanics Lab (Group I and II)	24
11.	ESC2401L07	Engineering Graphics and Computer Aided Drafting	26
12.	ESC2401P09	Engineering Graphics and Computer Aided Drafting Lab	28
13.	VSC2401P01	Experiential Learning I	30
14.	HSM2401P01	Professional and Technical Communication	32
15.	LLC2401P01	Liberal Learning - I	35
16.	BSC2402L04	Engineering Chemistry (Group A)	37
17.	BSC2401L05	Engineering Chemistry (Group B)	40
18.	BSC2401L06	Engineering Chemistry (Group C)	43
19.	BSC2401P08	Engineering Chemistry Lab (Group A, B and C)	46
20.	BSC2402L09	Differential Equation & Integral Calculus (Group A)	48
21.	BSC2402L10	Differential Equation & Integral Calculus (Group B)	50
22.	BSC2402L11	Differential Equation & Integral Calculus (Group C)	52
23.	ESC2401L03	Electrical and Electronics Engineering	54
24.	ESC2401P06	Electrical and Electronics Engineering Lab	57
25.	ESC2401L08	Programming and Problem Solving	59
26.	ESC2401P10	Programming and Problem Solving Lab	61
27.	VSC2402P02	Experiential Learning II	63
28.	HSM2402L02	Science and Engineering of Ancient India	65
29.	LLC2402P02	Liberal Learning II	68
30.	AID2402L01	Python for Data Science	70
31.	CVE2402L01	Basics of Civil Engineering	72
32.	CPE2402L01	Object Oriented Programming, with C++	74
33.	ETE2402L01	Semiconductor Devices and Sensors	76
34.	INT2402L01	Fundamentals of Java Programming	78
35.	ICE2402L01	Measurements in Instrumentation	80
36.	RNA2402L01	Elements of Mechanical Engineering	82
37.	MNE2402L01	Basic Mechanical Engineering	84

		First Year Engin	eerii	ng FY	B Tec	h Se	mester l	[
				Teachir	g Sche	me		Eval	luatio	n Sch	neme					
	Course							Theory Marks				ctical arks				
Course Code	Туре	Course	L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Ma f Pa	Iin arks or ssin g	Max %	Min Marks for Passing				
							CCE	50	20	40						
BSC2401L01-03/ BSC2401L04-06	BSC 1/2	Engineering Physics/Chemistry	3	0	0	3	ESE	50	20	40						
BSC2401P07/ BSC2401P08	BSC 1/2	Engineering Physics/Chemistry Lab	0	0	2	1	CCE				100	40				
		·					CCE	50	20	40						
BSC2401L09-11	BSC 3	Linear Algebra and Differential Calculus	3	1	0	4	ESE	50	20	40						
				700		Applied					CCE	50	20			
ESC2401L01-02/ ESC2401L03	ESC 1/2	Mechanics/Electrical and Electronics Engineering	3	0	0	3	ESE	50	20	40						
ESC2401P04-05/ ESC2401P06	ESC 1/2	Applied Mechanics lab/Electrical and Electronics Engineering Lab	0	0	2	1	CCE				100	40				
		Engineering Graphics					CCE	50	20							
ESC2401L07/ ESC2401L08	ESC 3/4	and Computer Aided Drafting /Programming and Problem Solving	2	0	0	2	ESE	50	20	40						
ESC2401P09/ ESC2401P10	ESC 3/4	Engineering Graphics and Computer Aided Drafting Lab/ Programming and Problem Solving Lab	0	0	2	1	CCE				100	40				
VSC2401P01	VSE C1	Experiential Learning I	0	1	2	2	CCE				100	40				
HSM2401P01	AEC 1	Professional and Technical Communication	0	1	2	2	CCE				100	40				
LLC2401P01	CC1	Liberal Learning I/ Liberal Learning II	0	1	2	2	CCE				100	40				
		Total Credits	11	4	12	21				ı						
					Hrs											
			The		15											
				ct/Lab	12											
			Tota	al	27											

		First Year Enginee	ering	FY B	Tecl	h Ser	nester l	II				
			T	eachin	g Sche	me		Eva	luatio	n Sch	neme	
	Course	_	L	Т	P	Cr		Theo	ry Ma	arks		ctical arks
Course Code	Туре	Course	(Hr)		(Hr)	Ci	Exam	Max %	Min Marks for Passing		Max %	Min Marks for Passin g
BSC2402L01-03/ BSC2402L04-06	BSC1/2	Engineering Physics/Chemistry	3	0	0	3	CCE ESE	50 50	20	40		
BSC2402P07/ BSC2402P08	BSC1/2	Engineering Physics/Chemistry Lab	0	0	2	1	CCE				100	40
							CCE	50	20			
BSC2402L09-11	BSC4	Differential Equation and Integral Calculus	3	1	0	4	ESE	50	20	40		
		Applied					CCE	50	20			
ESC2402L01-02/ ESC2402L03	ESC1/2	Mechanics/Electrical and Electronics Engineering	3	0	0	3	ESE	50	20	40		
ESC2402P04-05/ ESC2402P06	ESC1/2	Applied Mechanics Lab/Electrical and Electronics Engineering Lab	0	0	2	1	CCE				100	40
		Engineering Graphics					CCE	50	20			
ESC2402L07/ ESC2402L08	ESC3/4	and Computer Aided Drafting /Programming and Problem Solving	2	0	0	2	ESE	50	20	40		
ESC2402P09/ ESC2402P10	ESC3/4	Engineering Graphics and Computer Aided Drafting /Programming and Problem Solving Lab	0	0	2	1	CCE				100	40
		Program Specific					CCE	50	20			
XXX2402L01	PCC1	Core Course	2	0	0	2	ESE	50	20	40		
VSC2402P02	VSEC2	Experiential Learning II	0	1	2	2	CCE				100	40
HSM2402L02	IKS	Science and Engineering of Ancient India	2	0	0	2	CCE				100	40
LLC2402P02	CC2	Liberal Learning I/ Liberal Learning II	0	1	2	2	CCE				100	40
		Total Credits	15	3	10	23						
			Th.	OWY	Hrs 18							
			The Prac	ory ct/Lab	10							
			Tota		28							
	<u> </u>								1	L		

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2401L01, Course Title: Engineering Physics (Group A) Category: Basic Science Course

		Tea	aching Sche	me	Evaluation Scheme			
T	Т	ъ	Cw	Tu Evon		Theory % Marks		
L	1	r	Cr	Exam	Max	Min fo	r Pass	
3	0	0	3	CCE	50	20	40	
39	0	0		ESE	50	20	40	

Prerequisites:

Properties of light, wave-particle duality, semiconductors

Course Objective

- 1. Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.
- 2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence it fosters temperament of searching cause effect relationship.
- 3. Proposed curriculum is the show case of combination of Photonics, Optoelectronics, solid state technology, which are closer to the industrial world.
- 4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development.

Course Outcomes: After successful completion of the course the student will be able to

CO1	Apply the properties of laser in various applications like material working and
	holography.
CO2	Correlate the principles in quantum mechanics with applications like dynamics of
	electrons and quantum computing.
CO3	Estimate electric load for fixing solar PV systems for the domestic application.
CO4	Compare the use of normal conductor and Superconductor for SQUID and MAGLEV
	Train.
CO5	Select optic fibre for intended communication system.

Syllahus

	Synabus									
Unit I	PHOTONICS	HOTONICS 8 hrs								
Basic Mechanisms- absorption, emission, inverted population, metastable state, Construction and working of laser cavity, CO ₂ Laser, He-Ne Laser and Semiconductor L (Homo-junction and Heterojunction). Applications of Laser : Material working, Laser Distance Meter (LDM), Holography										
Unit II	INTRODUCTION TO QUANTUM THEORY	8 hrs								
Introduction to Quantum Mechanics, De-Broglie hypothesis, phase and group ve										

Introduction to Quantum Mechanics, De-Broglie hypothesis, phase and group velocity. Heisenberg's uncertainty principle with illustration, Wave function and its physical significance. Schrodinger wave equations, Illustration of particle in a rigid box using Schrodinger time independent equation.

Applications of Quantum Theory: Tunneling effect and its illustration with examples of Alpha particle decay, Tunnel diode, Scanning Tunneling Microscope.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Unit III SOLAR CELL DEVICES & SOLAR THERMAL TECHNOLOGY

8 hrs

Principle, Construction, working of Solar Cells, I-V characteristics and Fill Factor of Solar Cells, Use of antireflection coating on solar cell to improve power output.

Application: Basic PV System and its specifications (Load calculation, Backup time, Battery capacity, inverter capacity and Solar panel capacity).

Principle of working of solar thermal system and its specifications

Application: Domestic Solar thermal water heater.

Unit IV | SUPERCONDUCTIVITY

8 hrs

Introduction to superconductivity, Properties of superconductors: zero electrical resistance, critical magnetic field, persistent current, Meissner effect, Type I and Type II superconductors, AC/DC Josephson effect, Construction and working of Superconducting Quantum Interface Device (SQUID).

Applications of SQUID and superconductors,

Unit V FIBER OPTICS

7 hrs

Principle, Construction and Working of Optic Fiber, Numerical Aperture, attenuation and its causes, Types of optic fiber, Working of Optical communication system on the basis of block diagram

Reference Books

- Non-destructive tests and evaluation of Materials 2nd Edition, J. Prasad, C.G. Krishnadas Nair, Mc Graw Hill (2017)
- 2. Jenkin and White, Fundamentals of Optics, 4th Edition, Tata McGraw Hill (2017)
- 3. Solar Photovoltaic Technology and Systems: Manual for Technicians, Trainers and Engineers (2013)
- 4. Solar Thermal Energy, A. Sreekumar, New Age Publications(2020)
- 5. Laser and Non-Linear Optics, B.B. Loud (Oscar publication)(2022)
- 6. Engineering Physics R. K. Gaur, Dhanpatray and Sons Publication (2012)

Text Books

- 1. A Text book of sound- N Subhrannyam and Brijilal (2018)
- 2. Engineering Physics, Avadhanulu, Kshirsagar, S. Chand Publications
- 3. A textbook of optics N Subrahmanyam and BriLal, S. Chand Publications
- 4. Engineering Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution (CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3									1
CO2	3	3									1
CO3	3	3				1		1			2
CO4	3	3					2				1
CO5	3	3									1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II

Course Code: BSC2402L02, Course Title: Engineering Physics (Group B), Category: Basic Science Course

	Teachi	ng Scheme	Evaluation Scheme					
L	Т	P	Cr	Exam	Theory % Marks			
(Hr)	(Hr)	(Hr)	Ci	Exam	Max %	Min ma Pa	rks for assing	
3	0	0	3	CCE	50	20	40	
39	0	0	Total: 39	ESE	50	20	40	

Course Objective:

- 1. Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.
- 2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence, it fosters temperament of searching cause effect relationship.
- 3. Proposed curriculum is the showcase of combination of Photonics, Optoelectronics, solid-state technology, which are closer to the industrial world.
- 4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development..

Course Outcomes: After successful completion of the course the student will be able to

- CO1 **Apply** the properties of laser in various applications like material working and holography.
- CO2 **Correlate** the principles in quantum mechanics with applications like dynamics of electrons and quantum computing.
- CO3 **Estimate** electric load for fixing solar PV systems for the domestic application.
- CO4 **Compare** the use of normal conductor and Superconductor for SQUID and MAGLEV Train.
- CO5 **Analyse** the properties of nanomaterials based on characterization technique.

Syllabus

Unit IPHOTONICS8 hrsBasic Mechanisms- absorption, emission, inverted population, metastable state,
Construction and working of laser cavity, CO2 Laser, He-Ne Laser and Semiconductor Laser
(Homo-junction and Heterojunction).Laser Distance Meter (LDM), HolographyApplications of Laser: Material working, Laser Distance Meter (LDM), Holography8 hrsIntroduction to Quantum Mechanics, De-Broglie hypothesis, phase and group velocity.
Heisenberg's uncertainty principle with illustration, Wave function and its physical

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

significance. Schrodinger wave equations, Illustration of particle in a rigid box using Schrodinger time independent equation.

Applications of Quantum Theory: Tunneling effect and its illustration with examples of Alpha particle decay, Tunnel diode, Scanning Tunneling Microscope.

Unit III SOLAR CELL DEVICES & SOLAR THERMAL TECHNOLOGY

8 hrs

Principle, Construction, working of Solar Cells, I-V characteristics and Fill Factor of Solar Cells, Use of antireflection coating on solar cell to improve power output.

Application: Basic PV System and its specifications (Load calculation, Backup time, Battery capacity, inverter capacity and Solar panel capacity).

Principle of working of solar thermal system and its specifications

Application: Domestic Solar thermal water heater.

Unit IV SUPERCONDUCTIVITY

8 hrs

Introduction to superconductivity, Properties of superconductors: zero electrical resistance, critical magnetic field, persistent current, Meissner effect, Type I and Type II superconductors, AC/DC Josephson effect, Construction and working of Superconducting Quantum Interface Device (SQUID).

Applications of SQUID and superconductors,

Unit V Characterizations of Thin Films

7 hrs

Purpose of characterization of material,

Surface Characterization: Contact Angle

Structural Characterization: X-ray diffraction (XRD) and Atomic Force Microscopy, **Electrochemical Characterization:** Cyclic Voltammetry, Galvanostatic Charge Discharge, Electrochemical Impedance Spectroscopy.

Reference Books

1. Non-destructive tests and evaluation of Materials 2nd Edition, J. Prasad, C.G.

Krishnadas Nair, Mc Graw Hill (2017)

- 2. Jenkin and White, Fundamentals of Optics, 4th Edition, Tata McGraw Hill (2017)
- 3. Solar Photovoltaic Technology and Systems: Manual for Technicians, Trainers and Engineers (2013)
- 4. Solar Thermal Energy, A. Sreekumar, New Age Publications (2020)
- 5.Laser and Non-Linear Optics, B.B. Loud (Oscar publication)(2022)
- 6.Introduction to Solid State Physics, C. Kittel (Wiley and Sons)(2012)
- 7. Fundamentals of Physics, Resnick and Halliday (John Wiley and Sons)(2021)
- 8. Thin Film Phenomena by K L Chopra McGraw -Hill Book Company, NY 1969.
- 9. Nanotechnology principle and practices by Sulabha K. Kulkarni (201

Text Books

- 1. Text book of sound- N Subhrannyam and Brijjlal (2018)
- 2. Engineering Physics, Avadhanulu, Kshirsagar, S. Chand Publications
- 3. A textbook of optics N Subrahmanyam and BriLal, S. Chand Publications
- 4. Engineering Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3									1
CO2	3	2									1
CO3	3	3				1		1			2
CO4	3	3					2				1
CO5	3	3									1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II

Course Code: BSC2402L03, Course Title: Engineering Physics (Group C), Category: Basic Science Course

		Tea	aching Sche	me	Evaluation Scheme			
т	Т	D	Cw	C E		Theory % M	arks	
L	I	P	Cr	Cr Exam	Max	r Pass		
3	0	0	3	CCE	50	20	40	
39	0	0		ESE	50	20	1 -0	

Prerequisites:

Properties of light, wave-particle duality, semiconductors

decay, Tunnel diode, Scanning Tunneling Microscope.

Course Objective:

- 1. Engineering being a science of measurement, Physics plays basic role in understanding the Principles behind engineering systems and helps to yield more efficient and effective designs for sustainable developments.
 - 2. Physics is called natural science since it has systematic explanation behind everything that happens in the universe. Hence, it fosters temperament of searching cause effect relationship.
 - 3. Proposed curriculum is the showcase of combination of Photonics, Optoelectronics, solid-state technology, which are closer to the industrial world.
 - 4. The focus is on to inculcate the scientific temperament in the minds of budding engineers for their 360-degree development.

Course (Course Outcomes: After successful completion of the course the student will be able to							
CO1	Apply the properties of laser in various applications like material working and							
	holography.							
CO2	Correlate the principles in quantum mechanics with applications like dynamics of							
	electrons and quantum computing.							
CO3	Estimate electric load for fixing solar PV systems for the domestic application.							
CO4	Analyze acoustical aspects of auditorium.							
CO5	Evaluate disorders in the material by using NDT for testing of various materials.							
	Distribute disorders in the indicator of doing 14D1 for testing of various indicators.							
1								

Syllabus

Syllabas							
Unit I	PHOTONICS	8 hrs					
Basic Mechanisms- absorption, emission, inverted population, metastable state,							
Construction and	working of laser cavity, CO2 Laser, He-Ne Laser and Semiconductor Laser	r (Homo-					
junction and Hete	erojunction).						
Applications of	Laser: Material working, Laser Distance Meter (LDM), Holography						
Unit II	INTRODUCTION TO QUANTUM THEORY	8 hrs					
Introduction to Q	Quantum Mechanics, De-Broglie hypothesis, phase and group velocity. Heis	senberg's					
uncertainty principle with illustration, Wave function and its physical significance. Schrodinger wave							
equations, Illustration of particle in a rigid box using Schrodinger time independent equation.							
Applications of C	Quantum Theory: Tunneling effect and its illustration with examples of Alph	a particle					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Unit III SOLAR CELL DEVICES & SOLAR THERMAL 8 hrs TECHNOLOGY

Principle, Construction, working of Solar Cells, I-V characteristics and Fill Factor of Solar Cells, Use of antireflection coating on solar cell to improve power output.

Application: Basic PV System and its specifications (Load calculation, Backup time, Battery capacity, inverter capacity and Solar panel capacity).

Principle of working of solar thermal system and its specifications

Application: Domestic Solar thermal water heater.

Unit IV Sound and Acoustics

8 hrs

Sound: Electroacoustic Transducers, Intensity and loudness of sound, Decibels, Intensity levels, musical notes, musical scale.

Acoustics of Indoor Area: Reverberation and time of reverberation, Absorption coefficient, Sabine's formula for measurement of reverberation time.

Application: Acoustic aspects of auditorium

Unit V NONDESTRUCTIVE TESTING OF MATERIALS

7 hrs

Purpose of Materials Testing, Types of testing: DT and NDT, Classification of Non-destructive testing methods (Surface and Volumetric), Merits and demerits of NDT.

NDT Techniques: Penetrant testing (PT), Magnetic Particle Testing (MT), Ultrasonic Testing (UT), Eddy Current Testing (ET) and Corrosion Testing.

Overview of International Standards used in testing.

Reference Books

1.Non-destructive tests and evaluation of Materials 2nd Edition, J. Prasad, C.G. Krishnadas Nair, Mc

Graw Hill (2017)

- 2. Jenkin and White, Fundamentals of Optics, 4th Edition, Tata McGraw Hill (2017)
- 3. Solar Photovoltaic Technology and Systems: Manual for Technicians, Trainers and

Engineers(2013)

- 4. Solar Thermal Energy, A. Sreekumar, New Age Publications (2020)
- 5.Laser and Non-Linear Optics, B.B. Loud (Oscar publication)(2022)
- 6. Physics for Engineering (Vol 1)- P. K. Palanisany, Scitech Publications (India) Pvt Ltd(2013).

Text Books

- 1.A Text book of sound- N Subhrannyam and Brijjlal (2018)
- 2. Engineering Physics, Avadhanulu, Kshirsagar, S. Chand Publications
- 3. A textbook of optics N Subrahmanyam and BriLal, S. Chand Publications
- 4. Engineering Physics, Gaur, Gupta, Dhanpat Rai and Sons Publication

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3									1
CO2	3	3									1
CO3	3	3				2		1			1
CO4	3	3					2				1
CO5	3	3					1				1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2401P07, Course Title: Engineering Physics Lab (Group A, B and C), Category: Basic Science Course

	Teaching	Evaluation Scheme							
L	L T P		Theory	% Ma	Practical % Marks				
(Hr)	(Hr)	(Hr)	Cr	Exam	Max	Ma Mar fo Pass	rks r	Max	Min Marks for Passin g
0	0	2	1	CCE				100	40
0	0	26	Total: 26	CCE	-	-	-	100	40

Prerequisites:

Properties of light, wave-particle duality, semiconductors

Course Objectives:

Being an engineering programme, in addition to cognitive skills psychomotor skills like measure, observe, operate etc. will be equally important. To cope up these skills following objectives are identified.

- 1. To set standard operating procedure to determine the respective parameters.
- 2. To analyze the changes in the calculated parameters by changing the variables.
- 3. To compare the theoretical and practically calculated values.

Course Outcomes: After successful completion of the course the student will be able to

- CO1 | Compare the theoretical and actual determined values of physical quantity
- CO2 **Estimate** Fill Factor of Solar Cell used in PV System.
- CO3 Classify materials for engineering applications.

Syllabus

PR1 Wavelength of Laser light

To determine wavelength of light by using diffraction pattern

PR 2 Use of LASER to study diffraction grating.

To determine grating element using laser.

PR 3 Plank's Constant

To determine Planck's constant using Light Emitting Diode

PR 4 Study of solar cell.

To determine fill factor of given solar cell

PR 5 Study of solar cell.

To study solar output power with variation in temperature.

PR 6 Study of band gap of semiconductor.

To determine the forbidden energy gap or band gap in eV for the given semiconductor.

PR 7 Hall effect experiment.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

To determine the hall coefficient, sign of majority carriers, concentration of majority carriers and mobility of majority carriers in the given semiconductors.

PR 8 Numerical Aperture

To determine Numerical Aperture of optical Fibre

PR 9 Synthesis of thin film

To synthesise thin film using Chemical Bath Deposition

PR 10 Synthesis of thin film

To synthesise thin film using Successive Ionic Layer Adsorption and Reaction (SILAR)

PR 11 Synthesis of thin film

To synthesise thin film using Electrodeposition

PR 12 Ultrasonic interferometer

To determine velocity of ultrasonic waves in liquid using ultrasonic interferometer.

PR 13 Penetrant Testing of given material surface

To visualize surface disorders by using penetrant testing (PT)

PR 14 Demonstration experiment: Rebound hammer

To assess the uniformity and quality of given concrete.

PR 15 Sound Absorption

To determine coefficient of absorption of sound for given material

Text Books

- 1) A textbook of Engineering Physics-Dr. M.N. Avadhanulu, Dr. P.G. Kshirsagar- Revised edition 2015, S. Chand & Company Pvt. Ltd.
- 2) Engineering Physics-R.K. Gaur, S. L Gupta, -Eighth revised edition 2012, Dhanpatrai Publications (P) Ltd

Reference Books

- 1) Lasers & nonlinear Optics-B. B. Laud-Third edition, New Age International (P) Ltd. Publishers.
- 2) Fundamentals of Optics- Francis A. Jenkins, Harvey E. White, Fourth edition, McGraw Hill Education (India) Pvt. Ltd.
- 3) Fundamentals of Physics- Resnick & Halliday (John Wiley &sons)
- 4) An introduction to Laser's theory and applications Dr. M. N. Avdhanulu, Dr. P.S. Hemne–Revised edition 2017-S. Chand & Company Pvt. Ltd.
- 5) Introduction to solid states Physics Charles Kittel, Eighth Edition, Wiley India Pvt Ltd.
- 6) Electrochemical Supercapacitors, Scientific fundamentals and Technological Applications by
- B. E.Conway, Kluwer Academic/ Plenum Publishers, New York, Boston, Dordrencht, London, Moscow

Scheme for Practical Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	1	1					1		
CO2	3	3				1	1				1
CO3	3	2						1			

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I

Course Code: BSC2401L09, Course Title: Linear Algebra and Differential Calculus (Group A), Category: Basic Science Course

	Teaching Scheme					Evaluation Scheme					
ı	Т	P			Theory Marks			Practical % Marks			
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Ma fo	lin orks or sing	Max	Min Marks for Passin g		
3	1	0	4	CCE	50	20					
39	13	0	Total: 52	ESE	50	20	40	-	-		

Prerequisites: Differentiation, Integration, Maxima, Minima, Determinants and Matrices. **Course Objective:** Purposes of the course are 1. To make the students familiarize with concepts and techniques in Calculus and Linear 2. The aim is to equip them with the techniques to understand advanced level mathematics and 3. The aim is to use applications that would enhance analytical thinking power, useful in their disciplines Course Outcomes: After successful completion of the course units the student will **Apply** the essential tool of matrices and linear algebra in a comprehensive manner for analysis of systems of linear equations applicable to engineering problems. **Apply** the essential tool of matrices and linear algebra in a comprehensive manner for finding linear and orthogonal transformations, Eigenvalues and Eigenvectors applicable to engineering problems. **Implement** Mean value theorems, expansions of function using Taylor's and Maclaurin's series useful in the analysis of engineering Problems. CO4 Apply the concept partial derivatives to find Jacobian used for functional dependence & estimating error and approximation **Solve** Algebraic and Transcendental equation & System of linear Equations Using numerical techniques.

Syllabus

Unit I	Elementary Linear Algebra	8 hrs					
Cramer's Rule, Rank of Matrix, Systems of linear equations, Linear Dependence and							
Independe	Independence, Applications to problems in Engineering						
Unit II	Advanced Linear Algebra	8 hrs					
Linear Tra	nsformation, Orthogonal Transformation, Eigenvalues and Eigenvectors	of 2*2					
and 3*3, Cayley Hamilton Theorem, Diagonalization of matrix							
Unit III	Differential Calculus	8 hrs					
Lagrange'	s Mean Value Theorem, Rolle's Theorem, L' Hospital's Rule, Taylor's Seri	es and					
Maclaurin	s Series, Expansion of Functions						
Unit IV	Function of Several Variables & its Applications	8 hrs					
Introduction to functions of several variables, Partial Derivatives, Euler's Theorem on Homogeneous							
functions, F	Partial derivative of Composite Function, Jacobians, Functional Dependence, Erro	ors and					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

		. •
An	proxim	ations
1 1 1 P	рголии	ations

Unit V Numerical Methods 7 hrs

Numerical Solution of System of Equation: Gauss Elimination, Jacobi & Gauss Seidel Method. Numerical Solution of Algebraic and Transcendental equation: Bisection Method, Regula Falsi Method, Newton Raphson Method

Text Book:

- 1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi), 2019, 44th Edition, ISBN-978-81-933284-9-1.
- 2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill), 2019,35th Edition,ISBN-978-0-07—063419-O.

Reference Books

- 1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10th Edition, ISBN-978-81-265-5423-2.
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019, 2nd Edition, ISBN-978-81-7758-546-9.
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017, 7th Edition, ISBN-978-81-315-1752-9.

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I Course Code: BSC2401L10, Course Title: Linear Algebra & Differential Calculus (Group B), Category: Basic Science Course

	Teaching	g Scheme			Evalu	ation	Schei	me	
L	Т	P			Theory	y Marl	ks		tical % arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mai fo	Min Marks for Passing		Min Marks for Pass ing
3	1	0	4	CCE	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: Differentiation, Integration, Maxima, Minima, Determinants and matrices.

Course Objectives: Purpose of the course are

- 1. To make the students familiarize with concepts and techniques in Calculus and Linear Algebra.
- 2. The aim is to equip them with the techniques to understand advanced level mathematics.
- 3. The aim is to Use Applications of mathematics that would enhance analytical thinking power, useful in their disciplines

	61 · · · · · · · · · · · · · · · · · · ·
useful in	n their disciplines
Course	e Outcomes: After successful completion of the course the student will
CO1	Apply the essential tool of matrices and linear algebra in a comprehensive manner for
	analysis of systems of linear equations applicable to engineering problems.
CO2	Apply the essential tool of matrices and linear algebra in a comprehensive manner for
	Evaluate linear and orthogonal transformations, Eigenvalues and Eigenvectors
CO3	Implement Mean value theorems, expansions of function using Taylor's and
	Maclaurin's series useful in the analysis of engineering.
CO4	Calculate the derivative of functions of several variables that are essential in various
	branches of Engineering.
CO5	Examine the Fourier series representation and harmonic analysis for design and
	analysis of periodic continuous and discrete systems.

Syllabus

	Syllabus	
Unit I	Elementary Linear Algebra	8 hrs
Cramer's I	Rule, Rank of Matrix, Systems of linear equations, Linear Dependence and	
Independe	nce, Applications to problems in Engineering.	
Unit II	Advanced Linear Algebra	8 hrs
Linear Tra	nsformation, Orthogonal Transformation ,Eigenvalues and Eigenvectors o	f 2*2
and 3*3 m	atrices Cayley Hamilton Theorem, Diagonalization of matrix	
Unit III	Differential Calculus	8 hrs
Lagrange's	s Mean Value Theorem, Rolle's Theorem, L' Hospital's Rule, Taylor's Seri	es and
Maclaurin'	s Series, Expansion of Functions	
Unit IV	Function of Several Variables &Its Application	8 hrs
Introduction	n to functions of several variables, Partial Derivatives, Euler's Theorem on Homo	geneous
functions, F	Partial derivative of Composite Function, Jacobians, Functional Dependence, Erro	ors and
Approxima	tions	
Unit V	Fourier Series	7 hrs
	Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmon	onic
analysis, Pa	rseval's identity and Applications to problems in Engineering.	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Text Books:

- 1. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill)(2019,35th edition, ISBN-13978-0-07-063419-00)
- 2. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi)(2019,35th edition, ISBN-978-81-933284-9-1)

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.)(2022,10th ISBN-978-81-265-5423-2)
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education)(2019-2nd, ISBN-978-81-7758-546-9)
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning)(2017,7th, ISBN-978-81-315-1752-9)

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

F Y B Tech for Group C (Mech, Civil) Semester I Course Code: BSC2401L11, Course Title: Linear Algebra & Differential Calculus (Group C), Category: Basic Science Course

	Teaching	g Scheme		Evaluation Scheme						
L	Т	P			Theor	Theory Marks			tical % arks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing		Max	Min Marks for Passing	
3	1	0	4	CCE	50	20				
39	13	0	Total: 52	ESE	50	20	40	-	-	

Prerequisites: Differentiation, Integration, Maxima, Minima, Determinants and matrices. **Course Objective: Purpose of the course are** 1. To make the students familiarize with concepts and techniques in Calculus and Linear Algebra. 2. The aim is to equip them with the techniques to understand advanced level mathematics The aim is to Use Applications of mathematics that would enhance analytical thinking power, useful in their disciplines Course Outcomes: After successful completion of the course, students will CO1 Apply the essential tool of matrices and linear algebra in a comprehensive manner for analysis of systems of linear equations applicable to engineering problems. CO2 Apply the essential tool of matrices and linear algebra in a comprehensive manner to evaluate linear and orthogonal transformations, Eigenvalues and Eigenvectors CO3 Implement Mean value theorems, expansions of function using Taylor's and Maclaurin's series useful in the analysis of engineering. CO4 Apply the concept partial derivatives to find Jacobian used for functional dependence &

CO5 Apply basics of complex numbers to calculate roots and logarithms and its applications

estimating error and approximation

	Syllabus	
Unit I	Elementary Linear Algebra	8 hrs
Cramer's F	Rule, Rank of Matrix, Systems of linear equations, Linear Dependence and Indepe	ndence,
Application	ns to problems in Engineering	
Unit II	Advanced Linear Algebra	8 hrs
	nsformation, Orthogonal Transformation, Eigenvalues and Eigen Vectors of 2*2 milton Theorem, Diagonalization of matrix	and J.J.
Unit III	Differential Calculus	8 hrs
Lagrange's	Mean Value Theorem, Rolle's Theorem, L' Hospital's Rule, Taylor's Series and	
Maclaurin'	s Series, Expansion of Functions	
Unit IV	Function of Several Variables & its Applications	8 hrs
Introduction	on to functions of several variables, Partial Derivatives, Euler's Theorem on Homo	geneous
functions.	Partial derivative of Composite Function, Jacobians, Functional Dependence, Erro	ors and

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Approximations

Unit V Complex Numbers

7 hrs

Argand Diagram, Demoivre's Theorem and its application to find roots of algebraic equations. Logarithm of complex number, separation of real and imaginary parts, application to problems in Engineering

Text Book:

- 1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44th Edition,ISBN No 978-81-933284-9-1
- 2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,35th Edition, ISBN No-13978-0-07-063419-0

Reference Books

- 1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10^{th} Edition, ISBN No-978-81-265-5423-2
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), $2019,2^{\rm nd}$ Edition, ISBN No -978-81-7758-546-9
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edition, ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

First Year (FY) B Tech Semester I & II

Course Code: ESC2401L01, Course Title: Applied Mechanics (Group I), **Category: Engineering Science Course**

	Teaching	Scheme			Eval	uatio	n Scho	eme	
L	Т	P			Theory Marks				ctical arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Ma fo	lin orks or sing	Max %	Min Marks for Passin g
3	0	0	3	CCE	50	20			
39	0	0	Total: 39	ESE	50	20	40	-	-

Prerequisites: 12 th Physics, Mathematics
Course Objectives:
Equip students with a thorough understanding of applied mechanics principles and their practical
applications, enabling them to effectively analyze and solve engineering problems involving forces,
loads, and moments, and to integrate these concepts within related engineering disciplines.
Course Outcomes: After successful completion of the course units the student will
CO1 Understand the basic concept of force, moment & couple to determine resultant of various force systems.
CO2 Apply conditions of Static equilibrium to free body diagram to solve engineering problem
CO3 Analyze and solve engineering problems involving friction, centroids and moments of inertia
CO4 Analyze rectilinear and curvilinear motion of particle
CO5 Apply Newton's second law, work energy and impulse momentum principles for particles

Syllabus									
Unit I Force systems and its resultant									
Fundamental	concept, force system, Resolution and composition of forces, R	esultant of							
Concurrent for	orces. Moment of a force, Varignon's theorem, resultant of parallel for	orce system,							
Couple, Resu	ltant of general force system.								
Unit II	Equilibrium & Trusses	8 hrs							
Equilibrium : Introduction, Free body diagram, Equilibrium of concurrent, Equilibrium of two									
forces, three f	orces principle, parallel and general force system, type of load, type of	support,							
type of beam	and support reaction.								

Trusses-Two force member, assumption, Analysis of plane trusses by Method of joints & method of section

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Unit III Friction, Centroid and Moment of Inertia

8 hrs

Friction- Introduction, sliding and rolling friction, laws of coulomb friction, coefficient of friction, angle of repose, angle of friction, cone of friction, Laws of friction, application of friction on inclined planes, belt friction and ladders friction.

Centroid: Introduction, centroid of basic figure, centroid of composite figure, Moment of area, Centroid of plane lamina.

Moment of Inertia: Moment of inertia of simple geometrical figure, parallel axis theorem, perpendicular axis theorem, moment of inertia of composite figure.

Unit IV Kinematics of Particle

8 hrs

Introduction, basic concept, rectilinear motion: motion with uniform acceleration, gravitational acceleration and variable acceleration, Curvilinear motion: rectangular, normal and tangential component, projectile motion of a particle.

Unit V Kinetics of Particle

8 hrs

Introduction, Newton's Second Law of motion, Application of Newton's Second Law to rectilinear and curvilinear motion, Work energy principle, Impulse Momentum principle and impact.

Recommended Books

Text Books:

- 1. Engineering Mechanics, Ferdinand Singer, 3rd edition, Harper and Row
- 2. Engineering Mechanics (Statics and Dynamics) by Hibbeler R. C., Pearson Education

Reference Books:

- 1. Engineering Mechanics, S Timoshanko and Young, Tata McGraw Hill Education Pvt. Ltd. New Delhi.
- 2. Vector Mechanics for Engineers Statics, Beer and Johnston, Tata McGraw Hill
- 3. Vector Mechanics for Engineers Dynamics, Beer and Johnston, Tata McGraw Hill.
- 4. Engineering Mechanics Statics and Dynamics, Meriam J. L. and Kraige L.G., John Wiley and Sons.

NPTEL Link:

- 1. https://archive.nptel.ac.in/courses/112/106/112106286/
- 2 https://onlinecourses.nptel.ac.in/noc19_me41/preview

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2		2				2	2		
CO2	3	2						2	2		
CO3	3	2						2	2		
CO4	3	2						2	2		
CO5	3	2	2					2	2	2	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I & II

Course Code: ESC2402L02, Course Title: Applied Mechanics (Group II), **Category: Engineering Science Course**

	Teaching	Evaluation Scheme							
L	T	P			Theory Marks			Practical Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	1		rks or	Max %	Min Marks for Passing
3	0	0	3	CCE	50	20	40		
39	0	0	Total: 39	ESE	50	20		-	-

Prereg	uisites: 12 th Physics, Mathematics
Course	e Objectives: Purposes of the course are
Cours	se Objectives:
applica	students with a thorough understanding of applied mechanics principles and their practical ations, enabling them to effectively analyze and solve engineering problems involving loads, and moments, and to integrate these concepts within related engineering disciplines
Course	e Outcomes: After successful completion of the course units the student will
CO1	Understand the basic concept of force, moment & couple to determine resultant of various force systems.
CO2	Apply conditions of Static equilibrium to free body diagram to solve engineering problem
CO3	Analyze and solve engineering problems involving friction, centroids and moments of inertia
CO4	Analyze rectilinear and curvilinear motion of particle
CO5	Apply Newton's second law, work energy and impulse momentum principles for particles

Syllabus

Syllabus								
Unit I Force systems and its resultant 7 hrs								
Fundamental	concept, force system, Resolution and composition of forces, R	esultant of						
Concurrent for	orces. Moment of a force, Varignon's theorem, resultant of parallel for	orce system,						
Couple, Resu	Itant of general force system.							
Unit II	Equilibrium & Trusses	8 hrs						
forces, three f type of beam	Equilibrium : Introduction, Free body diagram, Equilibrium of concurrent, Equilibrium of two forces, three forces principle, parallel and general force system, type of load, type of support, type of beam and support reaction. Trusses -Two force member, assumption, Analysis of plane trusses by Method of joints & method							
Unit III	Unit III Friction, Centroid and Moment of Inertia 8 hrs							

DYP D. Y. PATIL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Friction- Introduction, sliding and rolling friction, laws of coulomb friction, coefficient of friction, angle of repose, angle of friction, cone of friction, Laws of friction, application of friction on inclined planes, belt friction and ladders friction.

Centroid: Introduction, centroid of basic figure, centroid of composite figure, Moment of area, Centroid of plane lamina.

Moment of Inertia: Moment of inertia of simple geometrical figure, parallel axis theorem, perpendicular axis theorem, moment of inertia of composite figure.

Unit IV	Kinematics of Particle	8 hrs

Introduction, basic concept, rectilinear motion: motion with uniform acceleration, gravitational acceleration and variable acceleration, Curvilinear motion: rectangular, normal and tangential component, projectile motion of a particle.

Unit V	Kinetics of Particle	8 hrs
C 1110 V		0 111

Introduction, Newton's Second Law of motion, Application of Newton's Second Law to rectilinear and curvilinear motion, Work energy principle, Impulse Momentum principle and impact.

Recommended Books

Text Books:

- 1. Engineering Mechanics, Ferdinand Singer, 3rd edition, Harper and Row
- 2. Engineering Mechanics (Statics and Dynamics) by Hibbeler R. C., Pearson Education

Reference Books:

- 1. Engineering Mechanics, S Timoshanko and Young, Tata McGraw Hill Education Pvt. Ltd. New Delhi.
- 2. Vector Mechanics for Engineers Statics, Beer and Johnston, Tata McGraw Hill
- 3. Vector Mechanics for Engineers Dynamics, Beer and Johnston, Tata McGraw Hill.
- 4. Engineering Mechanics Statics and Dynamics, Meriam J. L. and Kraige L.G., John Wiley and Sons.

NPTEL Link:

- 1. https://archive.nptel.ac.in/courses/112/106/112106286/
- 2 https://onlinecourses.nptel.ac.in/noc19_me41/preview

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2		2				2	2		
CO2	3	2						2	2		
CO3	3	2						2	2		
CO4	3	2						2	2		
CO5	3	2	2					2	2	2	

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II

Course Code: ESC2401P04, Course Title: Applied Mechanics Lab (Group I and II), Category: Engineering Science Course

	Teaching	Scheme		Evaluation Scheme				
L	Т	P				heory Iarks	Practical Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing	Max %	Min Marks for Passing
0	0	2	1					
Total Hours			CCE			100	40	
0	0	26	Total: 26					

Prereq	Prerequisites: Fundamentals of Applied Mechanics							
Course	Course Objectives: Purposes of the course are							
2. To te membe	 To Demonstrate principle of statics and hands on Microsoft excel/Programming. To teach how to Apply Condition of equilibrium for the determination of forces in the member. To impart knowledge of kinematics and kinetics of particle and give real life exposure. 							
Course	Outcomes: After successful completion of the course experiments the student will							
CO1	Determine resultant of the force system & coefficient of friction.							
CO2	Explain Curvilinear Motion and Determine coefficient of restitution for given surface.							
CO3	Apply principle of statics and determine the resultant of various force system by Microsoft excel & graphical Method.							
CO4	Produce a chart of the force system, friction, and type of support using real-world examples.							

List of Laboratory Experiments/Assignments/Micro Project

Group A (Any Six)

- 1. Verify law of polygon of forces/Law of triangle using Universal force table for given forces.
- 2. Verify Varignon's theorem of moments of forces using law of moment apparatus for given forces.
- 3. Determination of C.G of Planar figures.
- 4. Determination of forces developed in Jib and tie member of the jib crane.
- 5. Determination of coefficient friction of Rope/belt.

DYP D. Y. PATIL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

- 6. Determine coefficient of friction using friction apparatus for given block on inclined plane.
- 7. Study of curvilinear motion.
- 8. Determination of coefficient of restitution.

Group B (Any Two)

- 1. Determination of the resultant of general force system by graphical method.
- 2. Determination of the Position of resultant force by graphical method.
- 3. Determination of resultant of various force system by using Microsoft excel.

Group C (Any Two)

- 1. Prepare chart of types of forces showing real life examples.
- 2. Prepare chart showing all types of beams having types of support (roller, hinged, fixed) with sketches and corresponding photographs of real life examples.
- 3. Prepare photographic chart showing real life examples of uses of friction on horizontal (Walking, writing. etc.) and inclined plane (Slider in gardens, loading of heavy material in trucks etc.)
- 4. Market Survey: to identify the various steel rolled section used in construction Industry.

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2									
CO2	2	2									
CO3	2	2			1						
CO4	2	2						1			

CO4

CO₅

orthographic views

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester I & II

Course Code: ESC2401L07, Course Title: Engineering Graphics and Computer Aided Drafting (Common to All), Category: Engineering Science Course

	Teaching		Evalua	tion S	chen	1e			
L	Т	P			Theory Mark				ical % arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing		Max	Min Marks for Passing
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: Knowledge of Geometry and Computer basics
Course Objectives: Purposes of the course are
1. To create awareness and emphasize the need of Engineering Drawing for an engineer.
2. To follow basic drawing standards and conventions.
3. To inculcate the habits of logical analysis of the problem using engineering drawing.
4. To develop skills in visualizing 3-Dimensional engineering components and
documenting related information by using computer software.
Course Outcomes: After successful completion of the course units the student will
CO1 Explain the fundamentals of engineering graphics and basic principles of geometric
construction
CO2 Use the principles of drawing to draw projection of plane
CO3 Apply the concept of orthographic projection of an object to draw several 2D views
and its sectional views for visualizing the physical state of the object.

Syllabus

Draw Fully Dimensioned 2D, 3D drawings using computer aided drafting tools.

Apply the visualization skill to draw a simple isometric projection from given

Unit I	Introduction to Drawing and Projection of Line	4 hrs					
Introduction to Drawing, Introduction to drawing Instruments, Types of Lines, Drawing							
Sheet size	zes, Scale, Dimensioning, Symbols Construction of Polygon, Projection of	f point,					
	Line						
Unit II	Projection of Plane	5 hrs					
Introduc	ction, Projection of plane when plane is parallel to one and perpendicular to	o other,					
Projection	of plane when plane is inclined to one plane and perpendicular to other pr	rojections					
	of planes when it is inclined to both reference planes.						
Unit III	Orthographic Projection	6 hrs					
First angle	First angle and Third Angle Method of Projection, Introduction to different planes, Conversion						
of pictoria	d view of 3 dimensional object into orthographic view, Sectional Orth	ographic					
Projection	, Drafting the same using CAD Software						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Unit IV Isometric Projection 6 hrs

Concept of Isometric projection, isometric Scale and drawing, Conversion of orthographic view of simple 3D object into isometric drawing, Drafting the same using CAD Software.

Unit V Introduction to CAD 5 hrs

Introduction to 2 D modeling Software, Basic Commands Such as Line, Circle, and polygon Components and Assembly Drawing

All fasteners and drawing of Simple Assembly including Fasteners (Limited to 4-5 components), Drafting the same using CAD Software

Text Books

- 1. Bhatt N. D.. Engineering drawing, Charotar publishing house, ISBN-13 978-9380358963 .2014
- Shah P. J., Engineering Graphics, S. Chand and Company, 2013, ISBN-13. 978-8121997614

Reference Books

- 1. French, T.E. Vierck, C. J.; and Foster, R.J., Engineering Drawing, Tata-Mc Graw Hill, ISBN NO 0070223475, 2012.
- 2. Narayana K.L., Kannaiah. P., Engineering Drawing-Scitech Publications, Chennai, ISBN-13. 978-9385983177 2014.
- 3. Venugopal K., Engineering Drawing New Age International, ISBN-13. 978-8122431452 2004
- 4. https://archive.nptel.ac.in/courses/112/102/112102304/#
- 5. https://archive.nptel.ac.in/courses/112/105/112105294/

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	03	02					01		02	02	02
CO2	03	02	03		03			03		02	02
CO3	03	02								02	02
CO4	03	02			03			03	02	02	02
CO5					03					02	02

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: ESC2401P09, Course Title: Engineering Graphics and Computer Aided Drafting Lab (Common to All), Category: Engineering Science Course

	Te	eaching So	Evaluation Scheme							
	TI.	D			Theory % Marks			Prac	tical % Marks	
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Min for Passing		Max	Min for Passing	
0	0	2	1	CCE	-	-		100	40	
0	0	26	Total: 26	CCE			_	100	40	

Prereq	Prerequisites: Knowledge of Geometry and Computer basics							
Course	Course Objectives: Purposes of the course are							
1. To cr	reate awareness and emphasize the need of Engineering Drawing for an engineer.							
2. To fo	ollow basic drawing standards and conventions.							
3. To in	culcate the habits of logical analysis of the problem using engineering drawing.							
	evelop skills in visualizing 3-Dimensional engineering components							
and doc	cumenting related information by using computer software.							
Course	Outcomes: After successful completion of the course units the student will							
CO1	Demonstrate Projection of points, lines and planes inclined to both plane and							
	practice on CAD							
CO2	Practice the concept of orthographic projection of an object to draw several 2D							
	views and its sectional views for visualizing the physical state of the object.							
CO3	Practice the visualization skill to draw a simple isometric projection from given							
	orthographic views on CAD							
CO4	Practice the principles of drawing to draw the view of various solids on CAD							

Syllabus

Practical Session	26 hrs
1. Sheet No 1: Minimum 4 problems on Projection of lines and planes	06 hr
2. Sheet No 2: Minimum 2 problems on Orthographic Projection	06 hr
3. Sheet No 4: Minimum 2 problems on Isometric Projection	04 hr
4. Sheet No 5: Minimum 2 problems on Component drawing on CAD	04 hr
5. Sheet No 6: Minimum 2 problems on Assembly drawing on CAD	06 hr

Text Books

- 1. Bhatt N. D.. Engineering drawing, Charotar publishing house, ISBN-13 978-9380358963 ,2014
- 2. Shah P. J., Engineering Graphics, S. Chand and Company, 2013, ISBN-13. 978-8121997614

Reference Books

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

- 1. French, T.E. Vierck, C. J., and Foster, R.J., Engineering Drawing, Tata-Mc Graw Hill, ISBN NO 0070223475, 2012.
- 2. Narayana K.L., Kannaiah. P., Engineering Drawing-Scitech Publications, Chennai, ISBN-13. 978-9385983177 2014.
- 3. Venugopal K., Engineering Drawing New Age International, ISBN-13. 978-8122431452 2004
- 4. https://archive.nptel.ac.in/courses/112/102/112102304/#
- 5. https://archive.nptel.ac.in/courses/112/105/112105294/

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	03	02									02
CO2	03	02			03						02
CO3	03	02	03				02				02
CO4	03	02	03		03			03	02	03	02

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

DYP D Y PATEL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I Course Code: VSC2401P01, Course Title: Experiential Learning I (Common to All), Category: Vocational and Skill Enhancement Course

	Teaching	Evaluation Scheme							
					Theory	% Ma	arks		ical % ırks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max	Min Pa ng	ssi	Max	Min for Passi ng
0	1	2	2		-				
	Total	Hours		CCE	-] -	-	100	40
0	13	26	Total: 39		-	-			

Prerequisites: 1	No
-------------------------	----

Course Objectives:

- 1. To demonstrate various safety measures and equipment related to workshop and industry
- 2. To demonstrate various equipment related to machine shop in the workshop
- 3. To use and handle various day to day life equipment
- 4. Utilization of MS Office tools for various purposes.
- 5. Train students for Basic Life Support (BLS)

5. Ti	rain students for Basic Life Support (BLS).
Cour	se Outcomes: After successful completion of the course the student will be able to
CO1	Handle techniques for various tools and equipment commonly used in workshops are essential
	to reduce the risk of accidents and injuries during operation
CO2	Describe Centre Lathe, Drilling, Grinding, Milling, CNC, Refrigeration and Air
	Conditioning.
CO3	Assembly of Two-Wheeler, Sheet Metal Job, Fitting Job and PC/Laptop for different
	input values.
CO4	Creation of engaging presentations using MS PowerPoint, including slide design, multimedia
	integration, and delivery techniques.

Syllabus

A) Safety and Safety Equipment/Accessories and Basic Life Support

An expert session on Shop floor Safety and Safety Equipment/Accessories 02 hrs Training Session on Land Safety and Water Safety under Basic Life Support (BLS)

B) Demonstration

No	Description	Operations	Hrs
1	Center Lathe	Facing, Turning, Knurling, Grooving and Taper	04
		Turning, Machine configuration as per ISO.	
2	Drilling, Grinding, Milling	Drilling and Boring, Surface and Cylindrical	04
	Machine	Grinding and Gear Cutting	
3	CNC Machine	Facing and Turning	04
4	Refrigeration and	Parts and Working Cycle.	04
	Air Conditioning		
		Total hrs	16

DYP D. Y. PATHL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

C) Hands on Experience

No	Description	Operations	Hrs
1	Two-Wheeler	Dismantle and Assembly of Spark Plug,	06
		Carburetor, Wheels,	
2	Sheet Metal Job	Bending, Cutting, Piercing, Perforating,	08
		Punching, Riveting.	
3	Fitting Job	Drilling, Tapping, Male and Female Joints,	06
		Close Tolerances	
4	PC/Laptop Assembly	Dismantle and Assembly of SMPS, Hard Disk,	06
		Mother board etc.	
		Total hrs	26

D) MS Office

No	Description	Hrs
1	Word, Excel, PowerPoint: Report and Presentations on above	08

Reference: Rashtriya Life Saving Society (India), https://www.lifesavingindia.org/

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO09	PO10	PO11
CO1			2						2	2	3
CO2	2	2		2	3	2	2		2		3
CO3	2	2			3	2			2		3
CO4	2	2			3	2		2	2		3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester I

Course Code: HSM2401P01, Course Title: Professional and Technical Communication (Common to All), Category: Ability Enhancement Course

	Teaching Scheme				Evalua	tion S	Schei	me	
					Theor	y Mar	ks		ctical arks
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Min Pa ng	ssi	Max %	Min Marks for Passing
0	1	2	2		-				
	Total	Hours		CCE	-	- -		100	40
0	13	26	Total: 39		-	-			

Prere	quisites: Basic English Grammar Skills						
Cours	Course Objective: Purposes of Course are:						
1.	Equip students with essential professional and technical communication skills						
	necessary for success in the modern workplace.						
2.	Emphasize both written and verbal communication.						
3.	Cover topics in active listening, and public speaking.						
Cours	se Outcomes: After Successful completion of course units, students will						
CO1	Analyze and evaluate spoken information critically for understanding the context and						
	credibility of the source.						
CO2	Demonstrate effective interpersonal communication skills for harmonious and						
	productive interactions.						
CO3	Articulate strategies for clear and coherent writing skills for personal & professional						
	communication needs.						
CO4	Develop skills for effective and authentic non-verbal communication to ace the						
	professional communication needs						

Syllabus

Unit I	Development of Listening and Speaking Skills	04 Hrs.		
Introduct	ion to Listening skills, Barriers to Listening skills, active Listening techniques, lis	tening for		
main idea	as and details, Note taking strategies. Introduction to Speaking skills, Building vocal	oulary and		
fluency, (Conversational Skills, Public speaking fundamentals. Speed and Fluency, Removin	g MTI.		
Unit II	Development of Writing and Reading Skills	03 Hrs.		
Introduct	ion to Effective Written Communication, fundamentals of grammar and punctuatio	n,		
Paragrapl	h Structure, Essay writing, Report writing, Formal letter writing. Importance of Rea	ading,		
Compreh	ension and solving case studies, Synthesis writing			
Unit III	Fundamentals of Communication	03 Hrs.		
What is communication? Importance of communication, Communication Types – Verbal, Non-verbal,				
why is non-verbal communication important? Making eye contact (or lack thereof), Shaking hands, -				
Crossing or uncrossing legs, Folding or unfolding arms, Fidgeting, Eye contact, Smiling or frowning,				
Commun	ication styles.			

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Unit IV Business Communication

03 Hrs.

Business communication theory, Email Etiquette, Digital Communication, Presentation Skills, Ethics in Business Communication, Kinesics and Pitch modulation

Practical/Lab Sessions

Lab	Activities	Duration
Session		(Hrs.)
1	Listening Skills-Listen to the Audio and answer the questions (Language Lab	2
	Software & Linguaphone audios)	
2	Listening Skills- Listen & Repeat Activity	2
3	Reading Skills- Communication Case studies	2
4	Reading Skills- Newspaper Article, Short Story, Research Article Review &	2
	Discussion	
5	Writing Skills - Formal Letter writing (Application letter, Complaint Letter,	2
	Enquiry Letter)	
6	Writing Skills - Story Writing, Paragraph Writing	2
7	Writing Skills - Report Writing (Technical Report, Accident Report, Progress	2
	Report)	
8	Speaking Skills- Self Introduction	2
9	Speaking Skills- JAM Session	2
10	Speaking Skills- Debate	2
11	Speaking Skills-Role play	2
12	Presentation	2
13	Team Building	2

Reference Book

- 1. Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson),2011, ISBN -8131799905, 9788131799901
- 1. Communication Skills for Technical Students by T.M. Farhathullah (Orient Longman)2002, ISBN 9788125022473
- 2. Written Communication in English by Saran Freeman (Orient Longman) 1977, 8125004262
- 3. Essential English Grammar (Elementary & Intermediate) Raymond Murphy (CUP), 1990, ISBN 10-8175960299
- 4. Communication for Business: A Practical Approach by Shirley Tailor (Longman),2005, ISBN 9780273687658
- 5. Developing Communication Skills by Krishna Mohan & Meera Banerji (Macmillan),2009, ISBN 9780230638433
- 6. Business Correspondence and Report Writing, R. C. Sharma & Krishna Mohan (Tata McGraw Hill,2017, ISBN 9789390113002
- 7. Technical communication: Principles and practice, Raman, Minakshi, and Sangita Sharma. 3rd ed. Oxford University Press, 2015, ISBN 978-0199457496
- 8. https://ielts.org
- 9. NPTEL Course-Business English Communication IIT Madras Link https://youtu.be/GwF4ypDSr-A
- 11 NPTEL Course- Introduction to Effective Communication Link

https://archive.nptel.ac.in/courses/109/104/109104030/

Scheme for Continuous Evaluation

Teaching Scheme				Evaluation Scheme					
					Theory % Marks			Practical % Marks	
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max	Min Pass		Max	Min for Passin g
-	1	2	2						
	Total	CCE	-	-	-	100	40		
_	13	26	Total: 39						

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	-	-	-	-	1	1	3	-	2
CO2	-	1	ı	-	-	1	1	1	3	-	2
CO3	-	1	1	-	-	ı	-	2	3	-	2
CO4	-	-	-	-	-	1	-	2	3	-	2

First Year (FY) B Tech Semester I Course Code: LLC2401P01, Course Title: Liberal Learning - I (Common to All), Category: Co-Curricular Course

HC	LLC2401P001-A- Liberal Learning-1- German Language						
	Prerequisites: None						
Cour	Course Objectives:						
1.	To promote the holistic development of students through engagement in various						
	extra- curricular activities.						
2.	To enhance students' life skills through individual and group activities.						
Cour	se Outcomes: After successful completion of the course the student will be able to						
CO1	Understand and Apply Basic Phonetics and Vocabulary						
CO2	Demonstrate Fundamental Grammar and Sentence Formation						
CO3	CO3 Develop Conversational and Writing Skills						
CO4	Enhance Listening and Comprehension Skills						

Syllabus

Unit 1	Introduction to the Language & Phonetics	9 hrs
	Introduction to German Numbers, alphabets, days, months, seasons,	
	formulate questions, conjugation of verbs in present tense, personal	
	pronouns, the verb "to be", pronunciation, and basic greetings	
Unit 2	Basic Grammar and Sentence Formation	10 hrs
	Nouns: singular and plural forms, negation, definite and indefinite	
	articles, questions starting with an interrogative pronouns, verbs, articles, and sentence structure. Conversation in a Café. Past tense of	
	the verb "to be", accusative case, possessive articles in the nominative case, adjectives in a sentence. Verb conjugation (regular and irregular	
	present tense). Cities, countries and languages, People and houses.	
Unit 3	Reading and Writing	10 hrs
	Reading short texts, writing simple sentences Appointments and	
	orientations. Time asking questions related to time, prepositions,	
	separable verbs.	
Unit 4	Listening & Comprehension	10 hrs
	Listening to simple German dialogues and responding. Audios to teach phonetic sounds of alphabets. Dialogues between students pairs,	
	places directions & shopping	

LLC2401P001-B- Liberal Learning-1- Japanese Language
Prerequisites: None
Course Objectives:
1 To promote the holistic development of students through engagement in various

extra- curricular activities.

2.	To enhance students' life skills through individual and group activities.					
Cour	Course Outcomes: After successful completion of the course the student will be able to					
CO1	Understand and Apply Basic Phonetics and Vocabulary					
CO2	Demonstrate Fundamental Grammar and Sentence Formation					
CO3	Develop Conversational and Writing Skills					
CO4	Enhance Listening and Comprehension Skills					

Syllabus

Unit 1	Introduction to the Language & Hiragana script	11hrs
	Introduction to Japanese Language and greetings	
	Introduction to Hiragana Script and detailed study	
Unit 2	Introduction of Katakana script	6hrs
	Introduction to Katakana Script and study in detail	
Unit 3	Introduction to Kanjis and sentence making	10 hrs
	Introduction to Basic Kanjis (Just an introduction with number kanjis)	
	Basic sentence construction with demonstrative concepts using particles.	
Unit 4	Listening & Comprehension	12 hrs
	Introduction to the basic concept like Clock, Calendar, numbers etc	
	Introduction to the basic verbs and forms of verbs	

LLC2	LLC2401P001-C- Liberal Learning-1- Sketching and Painting						
Prerec	Prerequisites: None						
Cours	Course Objectives:						
1.	To promote the holistic development of students through engagement in various extra-						
	curricular activities.						
2.	To enhance students' life skills through individual and group activities.						
Cours	e Outcomes: After successful completion of the course the student will be able to						
CO1	Understand the importance of sketching in engineering and design.						
CO2	Sketch geometric shapes and objects with proper proportions and perspective and Use						
	shading techniques to create depth, volume, and realistic textures.						
CO3	Apply Sketching Skills to Human and Object Representation						
CO4	Create sketches of buildings, landscapes, and technical drawings.						

Syllabus

Unit 1	Introduction to Sketching	9	hrs
	Importance of sketching in engineering and design		
	 Understanding basic tools: pencils, erasers, sketch pads 		
	 Line types and freehand sketching techniques 		
	Warm-up exercises: line control and basic strokes		

Unit 2	Drawing and Shading	10 hrs
	 Drawing geometric shapes with accuracy 	
	 Basics of perspective (one-point, two-point, and three- 	
	point)	
	• Still life sketching (objects like cubes, spheres, cylinders)	
	 Understanding proportion and scale 	
	 Shading techniques: hatching, cross-hatching, stippling, 	
	blending	
	 Creating depth and volume using light and shadows 	
	• Textures: wood, metal, fabric, glass	
	Application in technical and artistic sketches	
Unit 3	Human and Object Sketching	10 hrs
	 Basics of human anatomy and facial proportions 	
	 Gesture drawing and capturing movement 	
	 Sketching everyday objects with accurate proportions 	
	 Introduction to portrait sketching 	
Unit 4	Architectural and Technical Sketching	10 hrs
	Sketching simple buildings and landscapes	
	 Basics of orthographic and isometric projections 	
	 Freehand technical sketching exercises 	
	Engineering visualization through sketching	

LLC2	LLC2401P001-D- Liberal Learning-1- Photography							
Prere	Prerequisites: None							
Cours	Course Objectives:							
1.	To promote the holistic development of students through engagement in various							
	extra- curricular activities.							
2.	To enhance students' life skills through individual and group activities.							
Cours	se Outcomes: After successful completion of the course the student will be able to							
CO1	Identify and utilize key camera and mobile photography settings, including aperture,							
	shutter speed, ISO, and white balance.							
CO2	Apply Composition and Framing Techniques							
CO3	Apply light control and exposure control techniques,							
CO4	Enhance Images through Basic Photo Editing.							

Unit 1	Introduction to Photography, Equipment and Setting	10hrs					
	 Evolution of photography and its importance 						
	Differences between mobile and DSLR/mirrorless cameras						
	• Understanding camera parts (lens, sensor, shutter, aperture)						
	Ethical considerations in photography						
	Mobile: HDR, manual mode, focus control, night mode						
	• Camera: Aperture, shutter speed, ISO (Exposure Triangle)						
	Autofocus vs. manual focus						
	White balance and color temperature						
Unit 2	Composition & Framing Techniques	9hrs					
	Rule of thirds, leading lines, symmetry, golden ratio						

	 Foreground & background depth in mobile & camera shots Using different perspectives and angles Practical session: Framing and composition exercises 	
Unit 3	Lighting & Exposure Control	10 hrs
	 Mobile: Using natural and artificial light effectively Camera: Understanding light metering & exposure compensation Golden hour, blue hour, and shadow play Hands-on session: Capturing photos in different lighting conditions 	
Unit 4	Introduction to Editing	10 hrs
	 Mobile: Using apps like Snapseed, Lightroom Mobile Camera: Basic editing in Lightroom & Photoshop Adjusting brightness, contrast, saturation, sharpness Practical exercise: Editing a raw photo from mobile and camera 	

LLC2	LLC2401P001-E- Liberal Learning-1- Sports							
Prere	Prerequisites: None							
Cour	Course Objectives:							
1.	To promote the holistic development of students through engagement in various							
	extra- curricular activities.							
2.	To enhance students' life skills through individual and group activities.							
Cour	se Outcomes: After successful completion of the course the student will be able to							
CO1	Understand the Fundamentals of Sports, Fitness, and Well-being							
CO2	Implement various basic techniques of Table Tennis							
CO3	Apply Cognitive and Strategic Thinking through Mind Sports							
CO4	Apply fundamental basic Cricket Skills and Gameplay Strategies							

Unit 1	Introduction to Sports & Fitness	9hrs
	 Importance of sports for physical and mental well-being 	
	 Basic warm-up and stretching techniques 	
	 Rules, history, and benefits of major indoor sports 	
	(Badminton, Table Tennis, Chess. Carrom)	
	 Safety measures in indoor sports. 	
	Endurance, flexibility, and strength training	
	Importance of agility and hand-eye coordination	
	 Yoga and breathing exercises for focus 	
	Injury prevention and recovery	
Unit 2	Table-Tennis -Basics and Skill Development	9hrs
	 Equipment and grip techniques (shakehand, penhold) 	
	Basic strokes: push, drive, smash, topspin, chop	

	Serving techniques and spin control	
	 Strategy for singles and doubles play 	
Unit 3	Mind Sports – Chess & Carrom	10 hrs
	• Chess: Rules, opening principles, middle-game tactics, and	
	endgame strategy	
	 Carrom: Rules, board setup, striking techniques, and scoring 	
	 Enhancing concentration and decision-making skills 	
	 Friendly competitions for skill improvement 	
Unit 4	Cricket- Basic Skills & Gameplay	10 hrs
	• Understanding the rules of the game.	
	 Improving the stamina, gameplay. 	
	 Improving personal gameplay and fielding 	

Rubrics for Continuous Evaluation

	Rubrics for ISE (100)							
No	Component	Marks						
1	Assignments	50						
2	Oral Viva and Practical Exam	50						

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2							2	2		3
CO2	2							2	2		3
CO3	2							2	2		3

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2402L04, Course Title: Engineering Chemistry (Group A), Category: Basic Science Course

	Teaching	Evaluation Scheme							
L	Т	P			Theory Marks			Practical Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max % Min marks for Passing		rks r	Max	Min marks for Passing
3	0	0	3	CCE	50	20			
39	0	0	Total: 39	ESE	50	20	40	-	_

Prerequisites: BSC2402L04

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 1. To understand technology involved in analysis and improving quality of water as commodity.
- 2. To understand corrosion mechanisms and preventive methods for corrosion control.
- 3.To study conventional and alternative fuels with respect to their properties and applications.
- 4. To understand structure, properties and applications of specialty polymers.
- 5. To understand the computational chemistry and the smart materials required for societal usage.

Course Outcomes: After Successful completion of course units, students will

- CO1 Apply the different methodologies for analysis of water and techniques involved in softening of water as commodity.
- CO2 Identify the causes of corrosion and methods for minimizing corrosion
- CO3 Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
- CO4 Demonstrate the knowledge of advanced engineering materials for various engineering applications
- CO5 Understand the computational chemistry techniques for material sciences, and properties and application of smart sensors to meet the technological challenges.

Syllabus

Water Technology Unit I 8 hrs Introduction, Types of hardness, Determination of hardness (EDTA method) and Alkalinity in Water, numerical. Water treatment: i) Zeolite method and numerical ii) Demineralization method. Purification of water: Reverse osmosis and Electro-dialysis. Unit II **Corrosion and Corrosion Control** 8 hrs Introduction, Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule, Factors affecting rate of corrosion. Corrosion Control: Cathodic and Anodic Protection, Types of Metal Coating (Cathodic and Anodic Coating), Methods of Applying Coating - Hot dipping, Electroplating, Cementation. Unit III **Fuels**

DYP D. Y. PATEL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Calorific value (CV): Types of Calorific Value, Determination of Calorific value: Principle, construction and working of Bomb calorimeter and numerical,

Solid fuel: Coal: Analysis of Coal-Proximate and numerical

Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boiling range and uses of various fractions.

Gaseous fuel: Hydrogen gas as future fuels – production and storage. Fuel Cell (PEMFC).

Alternative Fuels – Power Alcohol and Biodiesel

Unit IV Polymers in Engineering

8 hrs

Introduction, Compounding of plastics, Structure, properties and Applications of

Biodegradable Polymer, Conducting Polymer, Electroluminescent Polymers, Thermoplastics Polymer and Polymer Composites (FRP)

Unit V Computational Chemistry and Smart materials

7 hrs

Computational Chemistry: Definition, Scope, Applications and benefits.

Materials for memory storage: Introduction to materials for electronic memory, Types, Properties and Applications of organic, polymeric and hybrid materials.

RFID and IONT materials: Introduction, Components of RFID, structure, properties and applications of substrates - Graphene oxide, carbon nanotubes (CNTs)

Reference Books

- 1. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. Umare, S. Chand & Company Ltd.
- 2. Engineering Chemistry, Wiley India Pvt. Ltd.
- 3. Polymer Science and Technology, By Joel R. Fried, 3 ed, Prentice Hall Publisher
- 4. Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020, CRC Press, ISBN: 978-036-727-510-5.
- 5. Computational Chemistry and Molecular Modeling: Principles and Applications by K. I. Ramachandran, Deepa Gopakumar, Krishnan Namboori, Springer Publications

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	1									2
CO3	3	2				1					2
CO4	3					1					2
CO5	3	2			2						2

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2401L05, Course Title: Engineering Chemistry (Group B), Category: Basic Science Course

Γ	Teaching Scheme				Evaluation Scheme						
					Theory Ma	arks		Prac	ctical Marks		
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max%	Min marks for Passing		Max	Min marks for Passing		
3	0	0	3	CCE	50	20					
39	0	0	Total: 39	ESE	50	20	40	-	-		

Prerequisites: Course Code

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 1. To understand technology involved in analysis and improving quality of water as commodity.
- 2. To understand corrosion mechanisms and preventive methods for corrosion control.
- 3. To study conventional and alternative fuels with respect to their properties and applications.
- 4. To understand structure, properties and applications of specialty polymers.
- 6. To understand structure, properties and applications of nano material and acquire the knowledge of electro-analytical techniques that enables rapid and precise understanding of materials.

111	aterials.
Cour	se Outcomes: After Successful completion of course units, students will
CO1	Apply the different methodologies for analysis of water and techniques involved in
	softening of water as commodity.
CO2	Identify the causes of corrosion and methods for minimizing corrosion
CO3	Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
CO4	Demonstrate the knowledge of advanced engineering materials for various engineering
	applications
CO5	Select appropriate electro techniques and methods of material analysis.

	Syllabus							
Unit I	Water Technology	8 hrs						
Introduction	Introduction, Types of hardness, Determination of hardness (EDTA method) and Alkalinity in							
Water, nu	Water, numerical. Water treatment: i) Zeolite method and numerical ii) Demineralization							
method. P	urification of water: Reverse osmosis and Electro-dialysis.							
Unit II	Corrosion and Corrosion Control	8 hrs						
Introduction	Introduction, Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule, Factors							
affecting r	ate of corrosion.							
Corrosion	Control: Cathodic and Anodic Protection, Types of Metal Coating (Cath	nodic and						
Anodic Co	oating), Methods of Applying Coating - Hot dipping, Electroplating, Ceme	ntation.						
Unit III	Fuels	8 hrs						
Calorific	Calorific value (CV): Types of Calorific Value, Determination of Calorific value: Principle,							
	1 1: CD 1 1: . 1							

construction and working of Bomb calorimeter and numerical, Solid fuel: Coal: Analysis of Coal-Proximate and numerical

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boiling range and uses of various fractions.

Gaseous fuel: Hydrogen gas as future fuels – production and storage. Fuel Cell (PEMFC). Alternative Fuels – Power Alcohol and Biodiesel.

Unit IV Polymers in Engineering

8 hrs

Introduction, Compounding of plastics, Structure, properties and Applications of Biodegradable Polymer, Conducting Polymer, Electroluminescent Polymers, Thermoplastics Polymer and Polymer Composites (FRP)

Unit V Nanomaterials and Instrumental Methods of Analysis

8 hrs

Introduction, Classification of Nanomaterials, Properties of nanomaterials – Optical, Electrical, Thermal and Mechanical, Applications of Nanomaterials – Catalysis, Electronics and Telecommunications, Medicines and Composites,

Structure, properties and applications of Graphene, CNT's and Quantum Dots.

Conductometry: Introduction, conductivity cell, Conductometric titrations of acid versus base with titration curve.

pH-metry: Introduction, standardization of pH meter, pH metric titration of strong acid versus strong base with titration curve.

Reference Books

- 1. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. Umare, S. Chand & Company Ltd.
- 2. Engineering Chemistry, Wiley India Pvt. Ltd.
- 3. Polymer Science and Technology, By Joel R. Fried, 3 ed, Prentice Hall Publisher
- 4. Nano: The essentials Understanding nanoscience and nanotechnology.
- 5.Instrumental Methods of Chemical Analysis, G. R. Chatwal& S. K. Anand, Himalaya Publishing House.
- 6.Basic Concept of Analytical Chemistry, 2ed , S. M. Khopkar, New Age-International Publisher

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	1									2
CO3	3	2				1					2
CO4	3					1					2
CO5	3	2									2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2401L06, Course Title: Engineering Chemistry (Group C), Category: Basic Science Course

	Teaching	g Scheme		Evaluation Scheme						
					Theor	y Mai	rks		ctical arks	
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %	Mi mai fo Pass	rks r	Max	Min marks for Passing	
3	0	0	3	CCE	50	20				
39	0	0	Total: 39	ESE	50	20	40	-	-	

Prerequisites: BSC2401L02

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 1. To understand technology involved in analysis and improving quality of water as commodity.
- 2. To understand corrosion mechanisms and preventive methods for corrosion control.
- 3. To study conventional and alternative fuels with respect to their properties and applications.
- 4. To understand structure, properties and applications of specialty polymers.
- 5. To study the properties and applications of surfactants and lubricant

5.10 s	study the properties and applications of surfactants and lubricant
Cour	se Outcomes: After Successful completion of course units, students will
CO1	Apply the different methodologies for analysis of water and techniques involved in
	softening of water as commodity.
CO2	Identify the causes of corrosion and methods for minimizing corrosion
CO3	Relate fuel and suggest use of alternative fuels for minimizing emission of carbon.
CO4	Demonstrate the knowledge of advanced engineering materials for various engineering
	applications
CO5	Appreciate the knowledge of properties of surfactants and lubricants.

Syllabus

Unit I	Water Technology	8 hrs							
Introduction	n, Types of hardness, Determination of hardness (EDTA method) and Alkalinity	in Water,							
numerical.									
Water treatment: i) Zeolite method and numerical ii) Demineralization method. Purification of water:									
Reverse osi	mosis and Electro-dialysis.								
Unit II	Corrosion and Surface Control	8 hrs							
Introduction	on, Mechanism of Dry Corrosion and Wet Corrosion, Pilling Bedworth Rule	Factors							
affecting ra	ate of corrosion.								
Corrosion	Control: Cathodic and Anodic Protection, Types of Metal Coating (Cath	odic and							
Anodic Co	eating), Methods of Applying Coating - Hot dipping, Electroplating, Ceme	ntation.							
Unit III	Fuels	8 hrs							
Calorific value (CV): Types of Calorific Value, Determination of Calorific value: Principle,									
construction	and working of Bomb calorimeter and numerical	construction and working of Bomb calorimeter and numerical							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Solid fuel: Coal: Analysis of Coal-Proximate and numerical

Liquid fuel: Petroleum: Refining of petroleum /crude oil and composition, boiling range and uses of various fractions

Gaseous fuel: Hydrogen gas as future fuels – production and storage. Fuel Cell (PEMFC).

Alternative Fuels – Power Alcohol and Biodiesel

Unit IV | **Polymers in Engineering**

8 hrs

Introduction, Compounding of plastics, Structure, properties and Applications of Biodegradable Polymer, Conducting Polymer, Electroluminescent Polymers, Thermoplastics Polymer and Polymer Composites (FRP)

Unit V Surfactants and Lubricants

8 hrs

Surfactants: Methods of preparation, cleaning mechanism, Critical micelle concentration and its determination. Hydrophobic and Hydrophilic interactions, Micelles and reverse micelles.

Lubricants: Introduction, classification of lubricants - Solid, Semi –solid and Liquid Lubricants, Properties of lubricants: Physical properties and Chemical properties.

UV-Visible Spectroscopy: Lambert-Beer's Law, Electronic transitions, Instrumentation of double beam spectrophotometer and applications of UV-visible spectroscopy.

Reference Books

- 1. Engineering Chemistry by O.G. Palanna, Tata Magraw Hill Education Pvt. Ltd.
- 2. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. Umare, S. Chand & Company Ltd.
- 3. Polymer Science and Technology, By Joel R. Fried, 3 ed, Prentice Hall Publisher
- 4. Surfactants and Polymer in aqueous solution by K. Holmberg, B. Jonsson, V. Kronberg and

B. Lindman

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	1									2
CO3	3	2				1					2
CO4	3					1					2
CO5	3	2									2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II Course Code: BSC2401P08, Course Title: Engineering Chemistry Lab (Group A, B and C), Category: Basic Science Course

	Teachin	g Scheme		Evaluation Scheme					
L (Hr)	T (Hr)	P (Hr)	C	Evam		Theory % Marks		Prac % M	
(III)	(111)	(111)	Cr	Exam	Max %	Man Man fo Pas	rks r	Max	Min marks for Passin
						g			g
0	0	2	1	CCE	_	-	_	100	40
0	0	20	Total: 20	CCE	_	-	_	100	40

Prerequisites: BSC2401P02

Volumetric Titration, Electrochemical Series, Periodic Table, Classification and properties of polymers, Structure properties relationship.

Course Objectives: Purposes of Course are:

- 1.To understand technology involved in analysis of various solutions or solid materials.
- 2.To understand preventive methods for corrosion control.
- 3.To synthesize the products which has wide applications in engineering.

Course Outcomes: After Successful completion of course units, students will

- CO1 Distinguish the different methodologies for analysis of water or coal using numerous techniques involved.
- CO2 Instrumental methods of analysis.
- CO3 | Relate the green way to synthesize the materials.

Syllabus

PR 1	Hardness of Water	2 hrs						
To determi	ne hardness of water by EDTA method							
PR2	Alkalinity in Water	2 hrs						
To determi	ne alkalinity of water							
PR 3	Proximate analysis of coal	2 hrs						
.To determ	ine the moisture content from coal using proximate analysis.							
PR 4								
To coat copper and zinc on iron plate using electroplating.								
PR 5	Rate of corrosion							
To study o	f rate of corrosion in different pH of the solution.							
PR 6	Bomb Calorimeter	2 hrs						
To determi	ne the calorific value of given coal sample.							
PR 7	Molecular weight of Polymer	2 hrs						
To determi	ne the molecular weight of polyvinyl alcohol using Oswald's Viscometer.							
PR 8	Conductometry	2 hrs						
To determi	To determine the strength of mixture of strong acid and weak acid using conductometry.							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

PR 9	pH metry	2 hrs
To determ	ine the strength of strong acid using pH metry.	
PR 10	Colorimeter	2 hrs
To estimat	e the amount of copper from E-waste using Colorimeter.	
PR 11	Viscosity of lubricant.	2 hrs
To determ	ine the viscosity of given lubricant using Redwood Viscometer.	
Reference	Books	

- 1. Vogel's textbook of Quantitative chemical analysis by J Mendham, R C Denney, J D barnes, M J K Thomas, Pearson Education.
- 2.Laboratory Manual on Engineering Chemistry by Sudha Rani (Author), S.K. Bashin (Author), Dhanpat Rai Publishing Company Private Limited-New Delhi; Third edition

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2						1	1		1
CO2	3	2						1	1		1
CO3	3	2						1	1		

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II

Course Code: BSC2402L09, Course Title: - Differential Equation & Integral Calculus (Group A), Category: Basic Science Course

	Te	eaching S	Scheme		Evalua	tion	Scheme		
L	Т	P			Theory % Marks				ctical Iarks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %		Min for Passing		Min for Passing
3	01	0	4	CCE	50	20			
39	13	0	Total: 52	ESE	50	20	40	_	-

Prerequisites: BSC2401L13- Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purposes of the course are

Unit IV | Multiple Integration

- 1.To make the students familiarize with Mathematical Modeling of physical systems using differential equations
- 2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.
- 3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Course Outcomes: After successful completion of the course units the student will

- CO1 Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc
- CO2 **Use** advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.
- CO3 **Draw** the Cartesian, Polar, Parametric & Rose curve for a given equation.
- CO4 **Evaluate** multiple integrals and its application to find area bounded by curves, volume bounded by surfaces.
- CO5 **Solve** differential equations of first order and Integration using different numerical methods used in modern scientific computing.

Syllabus

Unit I	Ordinary Differential Equation & Its Applications	8 hrs					
Exact differential equations, Equations reducible to exact form. Linear differential equations,							
	ns of Differential Equations to Orthogonal Trajectories, Newton's Law of Cooling ctrical Circuits, One dimensional Conduction of Heat	g, Kirchhoff's					
		0.1					
Unit II	Integral Calculus	8 hrs					
	Formulae of standard trigonometric functions, , Beta function, Gamma fu of Beta & Gamma function, Differentiation under integral sign	nctions,					
Unit III	Curve Tracing	8 hrs					
Type I: Pr	operties of Cartesian curve ,Tracing of Cartesian Curve						
Type II: P	roperties of Parametric curves ,Tracing of Parametric curves, Type 3: Prop	erties of					
Polar Cur	ves, Tracing of Polar Curves, Rose curves						

8 hrs

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Double Integration: Direct evaluation, limits are not given, transformation to polar & Change of order of integration, Applications to find Area

Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate, Applications to find Volume

Unit V Numerical Methods

7 hrs

Numerical Solution of Ordinary Differential Equation: Euler's Method Modified Euler's Method, Runge Kutta 4th Order Method

Interpolation: Newton's Forward difference and Backwards Difference Method

Numerical Integration: Trapezoidal And Simpson's Rule

Text Book:

- 1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi), 2019, 44th Edition, ISBN-978-81-933284-9-1.
- 2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill), 2019,35th Edition,ISBN-978-0-07—063419-O.

Reference Books

- 1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 2022, 10th Edition, ISBN-978-81-265-5423-2.
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), 2019, 2nd Edition, ISBN-978-81-7758-546-9.
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017, 7th Edition, ISBN-978-81-315-1752-9.

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II

Course Code: BSC2402L10, Course Title: Differential Equation & Integral Calculus, Category (Group B): Basic Science Course

	Teaching	Evaluation Scheme							
L	Т	P			Theory	y % Marks		Practical % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Ma fo	in rks or sing	Max	Min Marks for Passin g
3	01	0	4	CCE	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: BSC2401L15 Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purpose of the course are

- 1. To make the students familiarize with Mathematical Modeling of physical systems using differential equations
- 2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.
- 3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Course Outcomes: After successful completion of the course ,students will

- Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc
- CO2 **Use** advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.
- CO3 | **Draw** the Cartesian, Polar, Parametric & Rose curve.
- CO4 **Use** the concepts of solid geometry using equations of sphere, cone and cylinder in a comprehensive manner
- CO5 **Evaluate** multiple integrals and its application to find area bounded by curves, volume bounded by surfaces

Syllabus

Unit IOrdinary Differential Equation & Its Applications8 hrsExact differential equations, Equations reducible to exact form. Linear differential equations,
Applications of Differential Equations to Orthogonal Trajectories, Newton's Law of Cooling,
Kirchhoff's Law of Electrical Circuits, One dimensional Conduction of HeatUnit IIIntegral Calculus8 hrs

8 hrs

Reduction Formulae of standard trigonometric functions, , Beta function, Gamma functions,

properties of Beta & Gamma function, Differentiation under integral sign

Unit III | Curve Tracing

Type I: Properties of Cartesian curve ,tracing of Cartesian curve

Type II: Properties of parametric curves ,tracing of parametric curves, Type 3: Properties of polar curves, tracing of polar curves, rose curves

Unit VI Coordinate Geometry 7 hrs

Cartesian, Spherical polar and Cylindrical coordinate systems, Sphere, Right circular Cone

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

and Right circular Cylinder.

Unit V Multiple Integration

8 hrs

Double Integration: Direct evaluation, limits are not given, transformation to polar & Change of order of integration , Applications to find Area

Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate , Applications to find Volume

Text Book:

- 1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44th Edition,ISBN No 978-81-933284-9-1
- 2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,35th Edition, ISBN No-13978-0-07-063419-0

Reference Books

- 1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.),2022,10th Edition, ISBN No 978-81-265-5423-2
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), $2019,2^{\rm nd}$ Edition, ISBN No -978-81-7758-546-9
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edition, ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	1	1	1	1	1	1	1	-	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech Semester II

Course Code: BSC2402L11, Course Title: Differential Equation & Integral Calculus, Category (Group C): Basic Science Course

	Teaching	Evaluation Scheme							
L	т	P			Theor	y % N	Iarks		etical Iarks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %		n for ssing	Max	Min for Passing
3	01	0	4	CCE	50	20			
39	13	0	Total: 52	ESE	50	20	40	-	-

Prerequisites: BSC2401L15 Integration, Differential Equation, Three-dimensional coordinate systems

Course Objective: Purpose of the course are

bounded by surfaces

- 1. To make the students familiarize with Mathematical Modeling of physical systems using differential equations
- 2. To make the students familiarize with advanced techniques of integration, tracing of curves, multiple integrals and their applications.
- 3. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance thinking power, useful in their disciplines

Cour	se Outcomes: After successful completion of the course ,students will
CO1	Apply the effective mathematical tools to solve first order differential equations to model physical processes such as Newton's law of cooling, electrical circuit etc
CO2	Use advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign needed in evaluating multiple integrals and their applications.
CO3	Draw the Cartesian, Polar, Parametric & Rose curve.
CO4	Find the Fourier series representation and harmonic analysis for design and analysis of periodic continuous and discrete systems
CO5	Evaluate multiple integrals and its application to find area bounded by curves, volume

Syllabus

Unit I	Ordinary Differential Equation & Its Applications	8 hrs				
Exact differ	rential equations, Equations reducible to exact form. Linear differential equations	,				
Application	s of Differential Equations to Orthogonal Trajectories, Newton's Law of Cooling	ŗ,				
Kirchhoff's	Law of Electrical Circuits, One dimensional Conduction of Heat					
Unit II	Integral Calculus	8 hrs				
Reduction I	Formulae of standard trigonometric functions, , Beta function, Gamma functions,	,				
properties of	properties of Beta & Gamma function, Differentiation under integral sign					
Unit III	Curve Tracing	8 hrs				
Type I: Pro	perties of Cartesian curve ,tracing of Cartesian curve					
Type II: Pro	operties of parametric curves ,tracing of parametric curves, Type 3: Properties of	polar				
curves, trac	ing of polar curves, rose curves					
Unit IV	Fourier Series	7 hrs				
Definition,	Definition, Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmonic					
analysis, Pa	analysis, Parseval's identity and Applications to problems in Engineering.					
Unit V	Multiple Integration	8 hrs				

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Double Integration: Direct evaluation, limits are not given, transformation to polar & Change of order of integration, Applications to find Area

Triple integrations: Spherical polar coordinate, Cylindrical polar coordinate, Applications to find Volume

Text Book:

- 1. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi),2019,44th Edition,ISBN No 978-81-933284-9-1
- 2. Higher Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Advanced ,2019,35th Edition, ISBN No-13978-0-07-063419-0

Reference Books

- 1. Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.),2022,10th Edition, ISBN No 978-81-265-5423-2
- 2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education), $2019,2^{\rm nd}$ Edition, ISBN No -978-81-7758-546-9
- 3. Advanced Engineering Mathematics by Peter V. O'Neil (Thomson Learning), 2017,7th Edition, ISBN 13:978-81-315-1752-9, ISBN 10:81-315-1752-7

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g	
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20	
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20	

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester I & II

Course Code: ESC2401L03, Course Title: Electrical and Electronics Engineering, Category: Engineering Science Course

	Teaching	Evaluation Scheme							
L	Т	P			Theory % Marks			Practical % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mai fo	Min Marks for Passing		Min Marks for Passing
3	0	0	3	CCE	50	20			
39	0	0	Total: 39	ESE	50	20	40	ı	-

Prerequisites: Engineering Physics, electron theory, potential and kinetic energy, Diode fundamentals, Transistor.

Course Objectives:

- 1 To understand the basic concepts of electrical and electronics engineering.
- 2 To provide knowledge of D.C circuits, A.C. fundamentals and single phase A.C circuits, structure of Electrical power system and tariff.
- 3 To understand and apply the knowledge of diodes, Transistors, sensors and logic circuits in the field of engineering applications.

the me	eld of engineering applications.
Cour	rse Outcomes: After successful completion of the course the student will be able to
CO1	Apply KVL, KCL and different network theorems under DC supply for simplification
	of D.C. networks.
CO2	
	impedance and power with a.c supply along with phasor diagram.
CO3	Analyze Diode circuits for Rectifier and DC Power supply.
CO4	Apply the knowledge of Transistors as a amplifier, switch and logic gates for adder
	circuits
CO5	Apply different tariffs to calculate electricity bills for Residential and Commercial
	Load

Syllabus

Unit I D.C. Circuits 7 hrs

Classification of electrical networks, Energy sources – Ideal and Practical voltage and current sources, Simplifications of networks using series and parallel combinations and star-delta conversion formulae (No Derivation), Kirchhoff's laws and their applications for network solutions using Branch current method, Thevenin's theorem, Superposition Theorem and their applications.

Unit II AC Fundamentals & Single Phase AC Circuits 7 hrs

- **A) A.C. Fundamentals**: Mathematical and graphical representation of Sinusoidal voltages and currents, average and r.m.s. values, peak factor and form factor. Concept of phase and Phase difference, lagging, leading and in phase quantities and phasor representation.
- **B)** Single Phase AC Circuits: Study of AC circuits consisting of pure resistance, pure inductance, pure capacitance, series R-L, R-C and R-L-C circuits, phasor diagrams, voltage, current and power waveforms, resonance in series RLC circuits.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Unit III Diodes and its Applications

7 hrs

PN Junction Diode: Operation, VI Characteristics, Diode as a switch Rectifier: HWR and Bridge Rectifier. Zener diode: Working and application as a Voltage Regulator. Diode Application: DC Regulated Power Supply.

Unit IV | Transistors , sensors and Digital Electronics

7 hrs

BJT: Types, Working & BJT as an Amplifier, Sensor: Introduction and Selection Criterion for sensors, Sensor application: LVDT, Review of Number System, Logic Gates, De-Morgans Theorem, Half Adder, Full Adder, Simplification of logical expression for full adder using K-map. Introduction to Flip Flop(JK Flip Flop),

Unit V Electrical Power System & Tariff

7 hrs

A) Structure of Electrical Power system:

Structure of Electrical Power system , Load curve ,Concept of Base load and Peak load, Energy conversion

B) Tariff:

Introduction to Tariff, Tariff setting principles, desirable characteristics of Tariff, Residential and Commercial Tariff, Types of Tariff, Industrial consumers alongwith current electricity charges, Incentives and penalties of Tariff.

Text Books

1. B.L. Theraja, A text book on Electrical Technology Vol-I, 1st edition, S Chand & Company Ltd, New Delhi, ISBN – 81-219-2441-3

Reference Books

- 1. V.K. Mehta, Rohit Mehata Basic Electrical Engineering, S Chand Publications Ltd, New Delhi, ISBN 978-8121908719
- 2. D.P Kothari,I.J. Nagrath, Theory and Problems of Basic Electrical Engineering, 14th Edition,PHI Publication. ISBN-978-81-203-1263-0
- 3. Thomas L Floyd, Electronic Devises, 10th edition, Pearson Publication, ISBN-978-1292222 998
- 4. R P Jain, Modern Digital Electronics 5th edition Tata McHill Publication.ISBN-978-9355321770
- 5. Ramakant Gaikwad , Op-Amp and Linear integrated circuits ,4 th Edition , PHI publication ,ISBN $-\,978\text{-}9353949037$

NPTEL Video Links

https://archive.nptel.ac.in/courses/108/105/108105112/

https://youtu.be/Yg6XsepGCKY

https://archive.nptel.ac.in/courses/108/105/108105159/

http://vlabs.iitkgp.ernet.in/be/index.html#

https://nptel.ac.in/courses/117107094

First Year (FY) B Tech Semester II

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g	
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20	
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20	

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	-	-	-	1
CO2	3	3	-	1	-	-	-	-	-	-	1
CO3	3	2	-	-	-	1	1		1	1	1
CO4	3	-	1	-	-	-		1	-	-	1
CO5	3	2		-	1	-	-	-	-	-	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II First Year (FY) B Tech Semester I & II

Course Code: ESC2401P06, Course Title: Electrical and Electronics Engineering Lab, Category: Engineering Science Course

			eaching cheme		Evaluati	on Sch	ieme			
					Theory % Marks			Practical % Marks		
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Max %		n for ssing	Max	Min Marks for Passing	
0	0	2	1							
	To	tal Ho	ours	CCE	_			100	40	
0	0	26	Total: 26							

Prerequisites: Engineering physics, electron theory, electricity, potential and kinetic energy, Diode fundamentals, Transistor types.

Course Objectives:

- 1 To make students aware of safety measures and protective devices while working on electrical systems and to analyze A.C and D.C circuits
- 2 To identify active components, analyze rectifier circuits and logic circuits .

Cour	Course Outcomes: After successful completion of the course the student will be able to					
CO1	Identify need for safety precautions, Protective devices and Electrical wiring system					
	for electric supply.					
CO2	Analyze series R-L and series R-C circuit to find various parameters of series AC					
	circuit like Voltage, Current, Impedance and Power.					
CO3	Design D.C circuits by using different laws and Theorems.					
CO4	Analyze the rectifier circuits using source and measuring equipments.					
CO5	Design half adder and full adder by using basic gates and verify truth table for Half					
	adder and Full Adder.					

List of Experiments

Experiment No 1		2 hrs					
To study safety precautions while working on electrical systems, handling of various types of							
electrical equipments	electrical equipments, Electrical Wiring systems.						
Experiment No 2		2 hrs					
To measure the stea	To measure the steady-state response of series RL and RC circuits on AC supply and						
	observe voltage and current waveforms.						
Experiment No 3		2 hrs					
To verify Kirchhoff's	Voltage Law and Superposition theorem.						
Experiment No 4		2 hrs					
To verify Thevenin's t	heorem in a DC network.						
Experiment No 5		2 hrs					
To demonstrate differe	ent types of electrical protection equipment such as fuses, MCE	3,					
MCCB, ELCB, Megge	er.						
Experiment No 6		2 hrs					
Study of active compo	Study of active components (Semiconductor components, ICs)						
Experiment No 7		2 hrs					
Study of electronic dev	Study of electronic devices (Sources and measuring devices)						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Experiment No 8		2 hrs					
Study of Rectifier Circuit							
Experiment No 9		2 hrs					
Design and build Half	Design and build Half adder circuits using logic gates						
Experiment No 10		2 hrs					
Design and build Full adder circuits using logic gates							
Reference Rooks							

Reference Books

- 1. B.L. Theraja, A text book on Electrical Technology Vol-I & II, 1st edition, S Chand & Company Ltd, New Delhi, ISBN – 81-219-2441-3
- 2. V.K. Mehta, Rohit Mehata Basic Electrical Engineering, S Chand Publications Ltd, New Delhi, ISBN - 978-8121908719
- 3. D.P Kothari, I.J. Nagrath, Theory and Problems of Basic Electrical Engineering, 14th Edition, PHI Publication. ISBN-978-81-203-1263-0
- 4. Thomas L Floyd, Electronic Devises, 10th edition, Pearson Publication, ISBN-978-1292222 998
- 5. R P Jain, Modern Digital Electronics 5th edition Tata McHill Publication.ISBN-978-9355321770
- 6. Ramakant Gaikwad, Op-Amp and Linear integrated circuits, 4th Edition, PHI publication, ISBN - 978-9353949037

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	25	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	-	-	-	-	1	1	2	2	-	1
CO2	3	-	-	-	1	-	-	2	2	-	1
CO3	3	1	1	-		-	-	2	2	-	1
CO4	3	1	-	-	1	1	1	2	2	1	1
CO5	3	-	1	-	-	-	-	2	2	-	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II First Year (FY) B Tech Semester I & II

Course Code: ESC2401L08, Course Title: Programming and Problem Solving, Category: Engineering Science Course

Teac	Teaching Scheme				Evaluation Scheme					
L	Т	P			Theory	Theory % Marks			cal % Marks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks for Passing			Min Marks for Passing	
2	0	0	2	CCE	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: Fundamentals knowledge of computer programming.

Course Objectives: This course aims to build the basic introduction of C++ programming language. Purpose of Course are:

- 1. To learn program design tools and .
- 2. To understand the basics of C++ programming and conditional Statements in C++.
- 3. To learn the looping statements and arrays in C++.
- 4. To learn the concepts of strings in C++.
- 5. To learn how to create and implement the functions in C++

5.	To learn how to create and implement the functions in C++.
Cours	e Outcomes: After Successful completion of course units, students will
CO1	Use the program design tools like Algorithm, Pseudocode and Flowchart and basic
	concepts of C++ programming to write clean and efficient code for large
	applications.
CO2	Demonstrate the conditional Statements like if statement, if-else statement, if else-if
	ladder, Nested if statement and switch case statement for decision making.
CO3	Apply looping statements and Design C++ programs using arrays to implement the
	data structures.
CO4	Implement C++ programs using string operations and built in string functions for
	data manipulation.
CO5	Develop C++ programs using user defined and built in functions to implement the
	Abstraction in object oriented programming.

Syllabus

Unit I	Introduction to C++ Programming 6 hrs							
Introduction to Programming, Stages in Program Development, Program Design Tools:								
Algorithm	Algorithms, Pseudocode, Flowcharts, Introduction to C++ Programming Language, History							
of C++ lan	guage, Features of C++, Applications of C++, Simple C++ Program, Inpu	t and						
Output star	tements in C++, Comments, Tokens, Keywords, Variables, constants.							
Unit II Basics of C++ and Conditional Statements 6 hrs								
Omt II	basics of C++ and Conditional Statements	UIIIS						

DYP D. Y. PATHL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Basic Data Types, Operators, Expressions, Types of Expressions.

Conditional statements: if statement, if-else statement, if else-if ladder statement, nested if statement, switch case statement.

Unit III Looping Statements and Arrays in C++ 5 hrs

Looping Statements: for loop, while loop and do-while loop, break, continue, return. **Introduction to Arrays:** Array Concept, declaration, storage representation for array, Initializing Array, Types of Arrays- (1-D, 2-D).

Unit IV Strings in C++ 4 hrs

Basic operations Strings: Declaration and Initialization, String operations: length, copy, reverse, String built-in function.

Unit V Functions in C++ 5 hrs

Functions in C++, in-built and user defined functions, function prototype, Function Definition, Calling a Function.

Function Arguments: Formal and Actual Parameters, Parameter passing in functions, Call by Value, Call by Reference, Passing arrays to functions.

Text Books

- 1. E Balagurusamy, Object-Oriented Programming with C++, 7th edition, McGraw-Hill Publication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990.
- 2. Robert Lafore, Object-Oriented Programming in C++, fourth edition, Sams Publishing, 2001, ISBN:0672323087 (ISBN 13: 9780672323089.

Reference Books

- 1. Herbert Schildt, —C++ The complete reference, Eighth Edition, McGraw Hill Professional, 2011, ISBN:978-00-72226805.
- 2. Deitel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-297-0276-2.

Scheme for Theory Examination

v										
Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g		
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20		
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	1	3	1	1	2	2	1	2
CO2	3	3	2	1	3	1	1	2	2	1	2
CO3	3	3	2	1	3	1	1	2	2	1	2
CO4	3	3	2	1	3	1	1	2	2	1	2
CO5	3	3	2	1	3	1	1	2	2	2	2

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II First Year (FY) B Tech Semester I & II

Course Code: ESC2401P10, Course Title: Programming and Problem Solving Lab, Category: Engineering Science Course

	Teaching	g Scheme		Evaluation Scheme						
L	Т	P			Theor	y Mar	ks		ctical arks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Pa ng	ssi	Max	Min Marks for Passin g	
0	0	2	1		-	_		100	4.0	
0	0	26	Total: 26	CCE			-	100	40	

Prerequisites: Fundamentals knowledge of computer programming.

Course Objectives: This course aims to build the basic introduction of C++ programming language. Purpose of Course are:

- 1. To learn program design tools and logic development using C++ programming.
- 2. To understand the control structures in C++.
- 3. To learn the concepts of arrays, strings and functions in C++.

4.	To learn how to solve real world problems using C++.
Cour	se Outcomes: After Successful completion of course units, students will
CO1	Demonstrate logic development using basics of C++ programming to write clean and
	efficient code for large applications.
CO2	Perform the programs using conditional Statements like ifelse statements, switch
	Case statements and looping statements in C++ for decision making statements.
CO3	Create C++ Programs using arrays, strings and functions for Data Structure to
	manipulate the data.
CO4	Design real world problems using concepts of C++ Programming for the Game and
	Application development System.

Syllabus

	Practical Sessions (Assignments)	26 hrs
1	Write C++ program to swap two numbers.	2 Hr
2	Write C++ program to calculate the salary of an employee given his basic pay (taken as input from the user). Calculate salary of an employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employees pay professional tax as 2% of total salary. Calculate salary payable after Deductions.	2 Hr
3	Write C++ program to accept a student's five subject marks and compute His/her result. Student is passing if he/she scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%, then the grade	2 Hr
	is a distinction. If aggregate is $60>=$ and <75 then the grade of first division. If aggregate is $50>=$ and <60 , then the grade is second division. If aggregate is $40>=$ and <50 , then the grade is third division.	

DYP D. Y. PATH, COLLEGE OF ENGINEERING, AKURDY

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

4	Write C++ Program To Check if the given number is Armstrong Number or	2 Hr
	not.	
5	Write C++ Program to calculate the Average of all the elements present in an	2 Hr
	Array.	
6	Write C++ Program to check if the string is Palindrome or not	2 Hr
7	Write a C++ program the count number of vowels and consonants present in	4 Hr
	the given string.	
8	Write a C++ program to calculate factorial of a given number by using a user	2 Hr
	defined function.	
9	Write C++ Program to check if the given number is Prime or not by using a	4 Hr
	user defined function.	
10	Mini Project	4 Hr
	·	

Text Books

- 1. E Balagurusamy, Object-Oriented Programming with C++, 7th edition, McGraw-Hill Publication, 2018, ISBN 10: 9352607996, ISBN 13: 9789352607990.
- 2. Robert Lafore, Object-Oriented Programming in C++, fourth edition, Sams Publishing, 2001, ISBN:0672323087 ISBN 13: 9780672323089.

Reference Books

- 1. Herbert Schildt, —C++ The complete referencell, Eighth Edition, McGraw Hill Professional, 2011, ISBN:978-00-72226805.
- 2. Deitel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-297-0276-2.

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	2	-	-	-	2	2	-	1
CO2	2	2	1	-	2	-	-	-	2	2	-	1
CO3	2	2	1	1	2	-	-	-	2	2	-	1
CO4	2	2	2	1	2	-	-	-	2	2	-	2

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Course Code: VSC2402P02, Course Title: Experiential Learning 2 (Common to all), Category: Vocational and Skill Enhancement Course

	Teaching Scheme				Evaluation Scheme								
L	Т	P			Theory	ory % Marks			ical % ırks				
(Hr)	(Hr)	-	_	(Hr)	- -	Cr	Exam		Min fo		for		Min
					Max	Min for Passi ng		Max	for Passi ng				
0	0	4	2		-								
	Total	Hours		CCE	-	_	-	100	40				
0	0	52	Total: 52		-	-							

Prerequisites: No
Course Objectives:
1. To demonstrate various safety measures and equipment related to workshop and industry
2. To demonstrate various equipment related to workshop
3. To use and handle various day to day life equipment
4. To apply the MS Office tools for various purposes.
Course Outcomes: After successful completion of the course the student will be able to
CO1 Gain hands-on experience in using various engineering tools, equipment, and
techniques relevant to their field of study or profession
CO2 Analyze plumbing problems, identify potential solutions, and implement
effective problem-solving strategies.
CO3 Assemble Wood Working Job, Mobile Phone, LCD/LED TV, Domestic Electric
Wiring, Soldering, Welding.
CO4 Understand report and procedures followed for a given task related To MATLAB
Tool.

Syllabus

A) Safety and Safety Equipment/Accessories

An expert session on Shop Floor Safety and Safety Equipment/Accessories

02 hrs

B) Demonstration

No	Description	Operations	Hrs
1	Plumbing and Molding	Sand Casting, Mould Filling	04
2	3D Printing Machine	Fused Deposition Modelling (FDM)	04
3	Plastic Moulding	Type of Granules and Injection Moulding.	04
		Total hrs	12

First Year (FY) B Tech Semester II

C) Hands on Experience

No	Description	Operations	Hrs
1	WoodWorking Job	Wooden Joints, Pattern Making.	06
2	Mobile Phone	Assembly, Troubleshooting	04
3	LCD/LED TV	Assembly, Troubleshooting	04
4	Domestic Electric Wiring	Plug and Socket Connections and Other	04
		miscellaneous Electrical Parts	
5	Soldering	PCB Soldering	04
6	Welding	Arc Welding, TIG Welding, MIG Welding	08
		Total hrs	30

D) MATLAB

No	Description	Hrs
1	MATLAB commands and operations with applications	08

Scheme for Continuous Evaluation

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO09	PO10	PO11
CO1				2					2		3
CO2	2	2			3	2	2		2	2	3
CO3	2	2	2		3	2			2		3
CO4	2	2			3	2		2	2		3

^{3:} High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Course Code: HSM2402L02, Course Title: Science and Engineering of Ancient India, Category: Humanities Social Science and Management, Indian Knowledge System (IKS)

	Teaching Scheme				Evaluation Scheme				
L	Т	P				ory % arks		tical % arks	
(Hr)	(Hr)	_	Exam	Max %	Min marks for Passing	Max %	Min marks for Passing		
2	0	0	2	CCE	100	40		-	
	Total Hours								
26	0	0	Total: 26		•				

Course Objectives:

- 1. To introduce the contributions Science and Engineering, ancient Indian systems and traditions to modern word.
- 2. To increase students' awareness in Indian culture and civilization, including its knowledge systems and traditions.
- 3. To help students understand the knowledge, art, creative practices, skils, and values of ancient Indian systems.
- 4. To facilitate the study of India's rich scientific heritage.

Cour	Course Outcomes: After successful completion of the course the student wil be able to				
CO1	Explain Vedic Period, Ancient Indian Science and Engineering				
CO2	Demonstrate Concepts of Vedic Mathematics and Astronomy				
CO3	Collect Literature of Indian Town Planning and Arts				
CO4	Explain Artha shastra, Indian Agriculture, Religions and Languages				
CO5	Discover Ayurveda for Health, Welness, Psychology and Spirituality				

Syllabus

Unit I Vedic Period, Ancient Indian Science and Engineering 6 hrs Introduction to IKS, Vedas and types-Upved, Significance, Historical importance. Vedangas,

Introduction to IKS, Vedas and types-Upved, Significance, Historical importance. Vedangas, Upanishads and Darshanan-Six schools, Pancha mahabhuta

Physics: *Vaiśeṣika* Sūtra, Concepts of Space, Time, and Consciousness, Concept of Matter and Atom (*Anu*), Laws of Motion and Gravity, Electricity in Ancient India. Introduction to Maharshi *Kanad*, *Aryabhatta*. (2 hrs)

Chemistry: Outline of the contributions of ancient and medieval Indians in the area of chemistry and metalurgy. Case Study of Delhi Iron Pilar. Specific use, processing, and finishing of metals since the vedic times like mercury and zinc. Zinc distillation as mentioned in *Rasārṇava*. Bhasma; A nano-medicine of ancient India. Concept of Acid. (2 hrs)

Unit II	Vedic Mathematics and Astronomy	5 hrs

DYP D. Y. PATIL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Overview of development of Mathematics in India during the ancient and early classical Period.

Mathematics-Sulbhasutra, Aryabhaattta, Lilavati. Vedic maths-Cube and cube roots, Pi value, Arthematic counting.

Astronomy in India Vedang Jyotish, Aryabhatta Siddhanta, Introduction to *Varahamihira*, *Brahmagupta*. Vedic calendar based on astronomy. Introduction to *Pañcāṅga* and five elements of it, *rāśi* and *nakṣatra* division. Case Study Jantar Mantar, New Delhi. (2 hrs)

Unit III Indian Town Planning and Arts

5 hrs

Ancient Indian Architecture: Vastu Shastra and Temple Architecture, *Nagara* (northern style), *Vesara* (mixed style), and *Dravida* (southern style), Indian vernacular architecture, Temple style, cave architecture, rock cut architecture, Kalinga, Chandels, Rajput, Jain, Sikh, Maratha, Indo-Islamic architectural, Greco Buddhist style. Harappan Town Planning. Ancient Indian Craftsmanship (3 hrs)

Introduction to Indian Music and Musical Instruments: Swaras and Ragas, Veena, Ghatam, Flute, *Mridangam*, Harmonium, Sitar, Sarod, Shehnai, Tabla, Maddalam, Introduction to Indian Dances: *Bharatnatyam*, *Kuchipudi*, *Kathakali* etc. Indian Classical Dance (2 hrs)

Unit IV Artha shastra, Indian Agriculture, Religions and Languages

5 hrs

Trade and Commerce in Ancient India, Arthashastra (2 hrs).

Ancient Indian Farming Practices, Role of Nakshatra and Agnihotra on Agriculture. Harappan and Traditional Water Management System of Gujarat. Soil Preparation, irrigation, Crop Protection (1 hr).

Ancient Indian Religions and Modern Indian Languages, Introduction to Ancient Indian Warfare and Weaponry (2 hrs)

Unit V Ayurveda for Health, Wellness, Psychology and Spirituality

5 hrs

Charak & Sushrut Samhita, Ayurveda: Principles and Practices, Understanding composition of Human body through the concept of Dosha, Dhatu, Mala, Understanding Prakruthi, the Mind – Body Constitution Concept of saptadhatu & tridosh (3 hrs).

Definition, Meaning and objectives of Yoga, Relevance of yoga in modern age. Introduction of Hatha Yog, Raja Yog, Karma Yog, Gyana Yog, Bhakti Yog. Understanding eight steps of Ashtanga yoga, Understanding Consciousness (2 hrs).

Reference Books

- Guidelines for Training/Orientation of Faculty on Indian Knowledge Systems, Published by: Secretary, University Grants Commission, Bahadur Shah, Zafar Marg, New Delhi-110002
- 2. Introduction to Indian Knowledge System: Concepts and Applications, Mahadevan, B., Bhat, Vinayak Rajat, Nagendra Pavana R.N., Publisher PHI Learning Pvt. Ltd., 2022, ISBN 9391818218, 9789391818210.
- 3. Vaisesika Sutra of Kanada, Translated by Debasish Chakravarty, D K Print World, ISBN 9788124602294
- 4. Līlāvatī of Bhāskarācārya: A Treatise of Mathematics of Vedic Tradition: with Rationale in Terms of Modern Mathematics Largely Based on N.H. Phadke's Marāthī Translation of Līlāvatī, Translated by Krishnaji Shankara Patwardhan, Publisher Motilal Banarsidass Publishe, 200, ISBN 812081777X, 9788120817777
- 5. Aspects of History of Agriculture in Ancient India, Author: La lanji Gopal, Publisher:

DYP D. Y. PATHL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech Semester II

Bharati Prakashan, 1980

- 6. Light on Yoga: The Classic Guide to Yoga by the World's Foremost Authority, Author B.
- K. S. Iyengar, Publisher Harper Collins India, 2006, ISBN 8172235011, 9788172235017
- 7. Chopra, D. (2000). Perfect Health: The Complete Mind Body Guide.: Three Rivers Press.
- 8. Lad, Vasant. Ayurveda: The Science of Self-healing a Practical Guide., Motilal Banarsidass, 2002.

Scheme for Theory Examination

Component	Level	Parameters	Marks	Total	Passing
Continuous	Progressive	Understanding Viva Voce	20	50	20
Comprehensiv e	Evaluation	Involvement, Participation, and	10		
Evalution(CC		Engagement			
E)		Quality of Submission of Report	10		
		Attendance	10		
	End	Performance	25	50	20
	Evaluation	Oral Examination	25		

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	-	-	-	3	-	-	-	-	3
CO2	-	-	-	-	-	3	-	-	-	-	3
CO3	-	-	-	-	-	3	-	-	-	-	3
CO4	-	-	-	-	-	3	-	-	-	-	3
CO5	-	-	-	-	-	3	-	-	-	-	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

First Year (FY) B Tech Semester II

Course Code: LLC2402P02, Course Title: Liberal Learning II (Common to

All), Category: Co-curricular Course

	Teaching Scheme				Evaluation Scheme					
L (Hr)	T	D				ory % arks		Practical % Marks		
	(Hr)	(Hr)	Cr	Exam	Max	Min for Passi ng	Max	Min for Passi ng		
-	1	2	2							
Total Hours				CCE	_	_	100	40		
-	13	26	Total: 39							

Prerequi	Prerequisites: Course Code						
Course C	Course Objectives:						
1. To	1. To promote the holistic development of students through engagement various extra-						
cu	urricular activities.						
2. To	o enhance students' life skills through individual and group activities.						
Course C	Dutcomes: After successful completion of the course the student will be able to						
CO1	Demonstrate linguistic fluency in foreign or native languages through studying						
	the cultural and historical contexts related to their chosen discipline, understanding						
	its evolution, traditions, and the role it plays within various cultural settings and						
	narratives.						
CO2	Demonstrate enhanced ability to creatively express themselves and effectively						
	communicate ideas, emotions, and, or by creating innovative and artistic art pieces.						
CO3	Express creativity and individuality through their work, whether through artistic						
	creations, musical performances, or athletic activities, and present and perform						
	their skills confidently in various settings.						

Syllabus

LLC2401P001-A- Liberal Learning-2- German Language

Prere	Prerequisites: None							
Course Objectives:								
3.	. To promote the holistic development of students through engagement in various							
	extra	- curricular activities.						
4.	To en	hance students' life skills through individual and group activities.						
Cours	se Out	comes: After successful completion of the course the student will be	able to					
CO1	Apply	past and future tenses, modal verbs, and possessive articles in Germ	an.					
CO2	Utiliz	e Professional and Technical Language in Communication						
CO3								
CO4	CO4 Develop Reading, Writing, and Presentation Skills							
Unit 1 Advanced Grammar and Sentence Formation 91								

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

	Past and future tense, modal verbs, possessive articles in accusative					
	case, Profession and daily routine, talking about hobbies					
Unit 2	Professional & Technical Vocabulary	10 hrs				
	Engineering-related vocabulary in German -the daily case, Writing					
	emails and formal communication, making doctor appointments,					
	booking tickets, invitations etc. Understanding job-related					
	conversations					
Unit 3	Travel and Social Conversations	10 hrs				
	Phrases for travel, ordering food, shopping, Food and dirnks,					
	Weather, Preposition in Accusative					
Unit 4	Reading, Writing & Presentations	10 hrs				
	Reading and understanding short articles, prepositions					
	 Writing short essays and reports 					
	 Writing CVs and applications in German 					
	Watching and analyzing videos of native speakers					

LLC2401P001-B- Liberal Learning-2- Japanese Language Prerequisites: None **Course Objectives:** To promote the holistic development of students through engagement in various extra- curricular activities. To enhance students' life skills through individual and group activities. Course Outcomes: After successful completion of the course the student will be able to CO1 Demonstrate Proficiency in Advanced Grammar and Sentence Construction CO2 | Utilize Professional and Technical Language in Communication CO3 | Engage in Travel and Social Conversations Effectively CO4 Develop Reading, Writing, and Presentation Skills Unit 1 Grammar (verb) 12hrs Study of particles for Verbs, Verbs forms (~て、~ない、~た、~な Unit 2 **Kanjis and Counter 16** hrs Kanjis study (around 100 Nos.), Counters study Unit 3 Adjectives 5 hrs Adjectives with various forms

Unit 4	6 hrs					
	Casual forms (Verbs, Adjectives etc.)					
LLC2401P001-C- Liberal Learning-2- Sketching and Painting						
Prerequisites: None						

- Course Objectives:

 3. To promote the holistic development of students through engagement in various extra- curricular activities.
 - 4. To enhance students' life skills through individual and group activities.

Course Outcomes: After successful completion of the course the student will be able to

CO1 Understand Color Theory and Painting Fundamentals

9hrs

~~	20,01	op water color i aming reeming are and composition skins	
CO3	Apply	Acrylic Painting Methods and Texture Creation	
CO4	Expre	ss Creativity Through Conceptual and Thematic Art	
Unit 1		Introduction to Colors and Painting Mediums	11 hrs
		Color theory: primary, secondary, tertiary, and	
		complementary colors	
		 Introduction to painting mediums: watercolor, acrylics, oil 	
		 Brush handling and stroke techniques 	
		 Mixing colors and creating gradients 	
Unit	2	Watercolor Techniques and Composition	12 hrs
		 Wet-on-wet, wet-on-dry, and dry brush techniques 	
		 Creating light and shadow in watercolor 	
		 Painting simple landscapes and still-life compositions 	
		 Understanding composition and balance 	
Unit 3	3	Acrylic Painting and Texture Creation	10 hrs
		 Acrylic techniques: layering, impasto, glazing 	
		 Creating textures using palette knives and sponges 	
		 Painting abstract and impressionist compositions 	
		Experimenting with mixed media (combining sketching)	
		and painting)	
Unit 4	1	Conceptual and Creative Art	10 hrs
		 Expressing ideas through art (technology, innovation, 	
		sustainability themes)	
		Storytelling through painting	
		Creating a thematic artwork	
		Understanding artistic movements and their relevance	
LLC2	2401P0	01-D- Liberal Learning-2- Photography	
Prere	quisite	s: None	
Cours	se Obje	ectives:	
3.	To pr	omote the holistic development of students through engagement in va	rious
		- curricular activities.	
4.	To en	hance students' life skills through individual and group activities.	
Cours	se Outo	comes: After successful completion of the course the student will be	able to
CO1	Utilize	e professional camera and mobile settings, such as Pro mode, long ex	posure, and
	light t	rails, for creative motion shots.	
CO2	Devel	op Skills in Portrait and Street Photography	
CO3	Enhan	nce Expertise in Product, Nature, and Macro Photography	
CO4	Apply	Advanced Editing and Storytelling Techniques	
Unit 1	1	Advanced Photography Techniques	10hrs
		Mobile: Pro mode, macro mode, burst mode	
		Camera: Manual mode, long exposure, light trails	
		Motion blur, panning, night photography techniques	
		Hands-on session: Capturing creative motion shots	
		White balance and color temperature	
Unit	2	Doutroit & Street Dhotography	Ohre

Portrait & Street Photography

Unit 2

Develop Watercolor Painting Techniques and Composition Skills

	 Mobile & Camera: Capturing emotions and candid 							
	momentsUnderstanding lighting for portraits							
	Using portrait mode & depth effect on mobile							
	Hands-on session: Street and portrait photography exercises	10 hrs						
Unit 3	Trouble to March 1 Hotography							
	 Mobile & Camera: Close-up photography techniques 							
	 Using external lenses for mobile photography 							
	 Indoor lighting setup for product photography 							
	Hands-on session: Capturing detailed close-ups							
Unit 4	Advanced Editing & Creative Storytelling	10 hrs						
	 Advanced color grading techniques 							
	 Using layers, masking & retouching in Photoshop 							
	 Creating a photo story using multiple images 							
	Practical session: Editing a photo series for storytelling							
LLC2401P0	01-E- Liberal Learning-2- Sports							
Prerequisite								
Course Obje	ectives:							
1. To pr	omote the holistic development of students through engagement in var-	ious						
extra-	- curricular activities.							
	hance students' life skills through individual and group activities.							
	comes: After successful completion of the course the student will be ab	ole to						
	Advanced Strategies in Table Tennis							
CO2 Enhan	ice Football Skills and Game Techniques							
CO3 Apply	advanced chess and carrom tactics with strategic planning.							
	op Leadership and Teamwork in Sports	9hrs						
Unit 1	Advanced Table Tennis Strategies							
	 Spin variations and countering opponent strategies 							
	 Defensive and offensive strokes 							
	Footwork drills for faster response							
	Mock tournaments and strategy discussions							
Unit 2	Football-Skills Development	10hrs						
	Football passing							
	 Passing the ball with different parts of body 							
	Saving the ball from opponent teams							
	Improving personal skills							
	Controlling the ball and scoring goals							
Unit 3	Chess & Carrom-Competitive Play	10 hrs						
2 3	Choos & Carron Compendito Flay							

Chess: Advanced tactics (pin, fork, discovered attack),

Tournament rules and match simulation

Carrom: Advanced striking techniques, rebound shots, and

planning ahead

speed control

	 Psychological preparation and decision-making under 	
	pressure	
Unit 4	Team Sports & Leadership	10 hrs
	 Importance of teamwork and communication 	
	 Understanding leadership in sports 	
	 Indoor relay and team-building activities 	
	 Strategy sessions and role-playing in doubles matches 	

Rubrics for Continuous Evaluation

	Rubrics for ISE (100)	
No	Component	Marks
1	Assignments	50
2	Oral Viva and Practical Exam	50

CO-PO Mapping

		11 0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2							2	2		3
CO2	2							2	2		3
CO3	2							2	2		3

3: High, 2: Moderate, 1: Low, 0: No Mapping

DYP D. Y. PATIL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

First Year (FY) B Tech in Artificial intelligence and Data Science, Semester II

Course Code: AID2402L01, Course Title: Python for Data Science, Category: Program Core Course

	Teaching	Evaluation Scheme							
L	Т	P			Theor	y Mar	ks		ctical arks
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Mi mai fo Pass	rks r	Max %	Min marks for Passing
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites:	ESC2401L08 -	- Programming	& Problem Solving
I I CI CY WIDITCH		I I O SI WIIIIIIII	

Course Objectives: Purposes of the course are

- 1. Equip students with foundational Python programming skills, including syntax, data types and control structures.
- 2. Familiarize students with essential data structures in Python such as lists, tuples, dictionaries, and sets.
- 3. Develop students' proficiency in creating and using functions, modules, and packages in Python programming.
- 4. Introduce students to key data manipulation and analysis libraries.
- 5. Introduce students for efficient handling, analysis, and manipulation and visualization of data.

u	ata.
Cou	rse Outcomes: After successful completion of the course units the student will
CO	Demonstrate proficiency in basic Python syntax, data types, and control structures.
1	
CO	Use and manipulate python data structures, functions, packages and modules.
2	
CO	Analyze the structure and components of a Python package and understand
3	the module search path.
CO	Understand the fundamentals of data science and its applications.
4	
CO	Create informative data manipulation for visualization using python libraries.
5	

Syllabus

Unit I Introduction to Python Programming	6 hrs
---	-------

DYP D. Y. PATIL COLLEGE OF ENGINEERING, ANURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University,

Introduction to Python and its features, Python installation and setup (Anaconda, Jupyter Notebook) **Basic Python syntax:** variables, data types, operators, and expressions, **Control structures:** if-else statements, loops (for and while), and conditional statements

Unit II Python Data Structures

6 hrs

Lists: creation, indexing, slicing, and operations, **Tuples:** creating, accessing elements, and tuple operations, **Dictionaries:** creating, accessing elements, and dictionary methods, **Sets:** creating, adding/removing elements, and set operations.

Unit III | **Functions and Modules in Python**

6 hrs

Functions: defining functions, function arguments, return statements, and lambda functions. **Modules and packages:** creating modules, importing modules, and using built-in modules.

Unit IV Fundamentals of data science, applications of data science, Numpy array.

4 hrs

Introduction to NumPy arrays: creating arrays, indexing, slicing, and array operations. **Pandas Series:** creating Series, indexing, accessing elements.

Unit V | Pandas and Matplotlib

4 hrs

Pandas Data Frames: creating Data Frames, data manipulation. Matplotlib: line plots, scatter plots

Reference Books: -

- 1. "How to Solve it by Computer", R. G. Dromey, Pearson Education India; 1st edition, ISBN-10: 8131705625, ISBN-13: 978-8131705629.
- 2."Problem Solving and Programming Concepts", Maureen Spankle, Pearson; 9th edition, 2011, ISBN-10: 9780132492645, ISBN-13: 978- 0132492645.
- 3. "Learning Python", Romano Fabrizio, Packt Publishing Limited, 1st edition, 2015, ISBN: 9781783551712, 1783551712.
- 4."Head First Python- A Brain Friendly Guide", Paul Barry, SPD O'Reilly, 2nd edition, 2016, ISBN:978-93-5213-482-3.
- 5. "Python: The Complete Reference", Martin C. Brown, McGraw Hill Education, 4th edition-2018, ISBN-10:9789387572942, ISBN-13: 978-9387572942.

Text Book: -

- 1. "Python Programming Using Problem Solving Approach" Reema Thareja, Oxford University Press, First edition, 2019, ISBN 13: 978-0-19-948017-6.
- 2. "Core Python Programming", R. Nageswara Rao, Dreamtech Press; Second edition, 2018 ISBN-10: 938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL

Swayam / NPTEL/MOOC Course: -

- 1. "Python for Data Science" by Prof. Ragunathan Rengasamy IIT Madras.
- 2. "Python for Data Science" Infosys Springboard.

YouTube Link: -

- 1. Python Data Science Tutorial | Simplilearnhttps://www.youtube.com/watch?v=mkv5mxYu0Wk
- 2. Learn Python libraries https://www.youtube.com/watch?v=LHBE6Q9XlzI

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20

End Semester	Institute	10	10	10	10	10	50	20
Examination								
(ESE)								

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	2	1	2	1	-	-	-	1	1
CO2	2	2	2	1	3	2	-	-	-	-	1
CO3	2	2	2	1	3	1	-	-	1	-	1
CO4	2	2	2	3	3	1	1	1	1	1	1
CO5	2	2	3	-	3	1	-	-	-	-	1

3: High, 2: Moderate, 1: Low, -: No Mapping *****

First Year (FY) B Tech in Civil Engineering, Semester II Course Code: CVE2402L01, Course Title: Basics of Civil Engineering **Category: Program Core Course**

	Teaching	g Scheme	_	Evaluation Scheme					
T	Т	p			Theor	y Mar	Practical Marks		
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min marks for Passing		Max %	Min marks for Passing
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerec	quisites: No						
Cours	Course Objectives: Purposes of the course is,						
1. To	use basic Civil Engineering knowledge in nation development.						
2. To	become acquainted with real-world construction materials used for building						
	mponents.						
3. To	be aware of modern equipment's used in surveying.						
Cours	e Outcomes: After successful completion of the course, students will be able to,						
CO1	Describe the importance of various branches and interdisciplinary approach in Civil						
COI	Engineering for enormous understanding						
CO2	Identify and utilize construction materials, concrete types, and sustainable practices						
CO2	for effective building construction.						
CO3	Identify and describe the various types of foundations and superstructures						
CO4	Discuss the importance of surveying, leveling to understand topography						
CO5	Interpret the application of various construction equipment and automation technologies in the building process.						

Syllabus

Unit I	Introduction of Civil Engineering:	5 hrs						
A) Important	ce of civil engineering in society, branches of civil engineering, basic u	nits used						
in civil engir	eering and its conversion							
B) Important	ce of interdisciplinary approach in civil engineering							
Unit II Materials 6 hrs								
Basic materia	Basic materials for construction: Cement, bricks, stone, natural and artificial sand, steel- mild,							
tor, high tens	ile steel. Concrete types - PCC, RCC, pre-stressed and pre-cast, Intro	oduction to						
RMC plant, fu	andamental requirements of masonry, introduction to sustainable mater	ials.						
Unit III	Introduction to Construction	5 hrs						
A) Substructu	re: definition and function of foundation, Types of foundation (only Co	oncept)						
B) Superstruc	ture - load bearing and framed							
Unit IV	Introduction to Surveying	6 hrs						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

- A) Introduction to Surveying-Types, Principles, Applications.
- B) Introduction to levelling- HI, Rise and Fall method with change point.
- C) Introduction to contour map

Unit V Construction Equipment's and Automation

4 hrs

- A. Construction Equipment-Introduction to Excavator, Paver Machine, Tower crane.
- B. Introduction to Automation in Construction- Concept, Need, Examples related to different civil engineering projects

Reference Books

- 1. Basic Civil and Environmental Engineering by C.P Kaushik, S.S. Bahavikatti, Anubha Kaushik, Edition 2018
- 2. Surveying by N.N. Basak, Edition 2014 Tata Mc-Graw Hill
- 3. Building Construction and Drawing- Bindra and Arora, Edition 2012, Dhanapat Rai Publications.
- 4. Shah M.G., Kale C. M., Patki S. Y., "Building Drawing with an integrated approach to Built Environment", Tata McGraw-Hill publication, 2012.
- 5. Kanetkar T. P., Kulkarni S. V., "Surveying and Levelling (Vol. I)", Pune VidyarthiGrihaPrakashan, 2006.
- 6. Building Construction by Arora S.P. and Bindra S.P. Dhanpatrai and Sons publications, Delhi. Edition 2016
- 7. National Building Code by Bureau of Indian Standards (2000)
- 8. Water Supply Engineering by S.K. Garg, 33rd edition 2019, Khanna Publishers, Delhi
- 9. Highway Engineering by Khanna, C.E.G Justo, A.Veersrsgavan, Edition 2018, Nem Chandand Bros Publication.
- 10. Irrigation and Water Power Engineering by B. C. Punmia, 16th edition 2019, Laxmi Publications.

NPTEL Link:

- 1. https://onlinecourses.nptel.ac.in/noc22_ce42/preview
- 2. https://nptel.ac.in/courses/105107122

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	1	1			1				
CO2	3			1		1					
CO3	3	1									
CO4	3	1		1							
CO5	3				1	1					

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Computer Engineering, Semester II Course Code: CPE2402L01, Course Title: Object Oriented Programming, with C++, Category: Program Specific Core Course

	Teaching	g Scheme			Evaluation Scheme				
L	т	T. D.			Theor	y Mar	Practical % Marks		
(Hr)	(Hr)	P (Hr)	Cr	Exa m	Max %	Min Pa g	for ssin	Max	Min marks for Passin g
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	_	-

Prerequisites: ESC2401L08- Programming and Problem Solving

Course Objectives:

The course provides the basic foundations and in-depth understanding of object oriented Programming to develop programming skills which help students in software development.

- To understand the object-oriented programming paradigm and OOP concepts
- To understand and learn the basic constructions of C++
- To learn how inheritance and polymorphism work in C++
- To learn how to use file to maintain records with C++

Course Outcomes: After successful completion of the course the student will be able to CO1 Understand and apply basic object-oriented concepts to provide solutions for simple

	system.
CO2	Design and implement a program to demonstrate use of Inheritance in real time
	systems.

- CO3 **Develop** an application using polymorphism for solving any complex problem.
- CO4 Understand and use Pointer concept to implement Run Time Polymorphism
- CO5 **Apply** file handling concept for creating software applications.

Syllabus

Unit I	Fundamentals of Object Oriented Programming	6 hrs						
Procedure	Oriented Programming (POP) verses Object Oriented Programming (OOP), Object						
Oriented P	rogramming (OOP) Concepts							
C++ progr	ramming: Classes, Objects, array of object, Member functions, access specifications	pecifiers,						
friend fund	ctions, friend class, static variables, static functions, inline function, this	pointer,						
Namespac	es, Constructor- Types of Constructors: Default constructor, Paran	neterized						
constructo	r, Copy Constructors, Destructors, Unit testing							
Unit II	Inheritance	5 hrs						
Inheritance	e- Basic Concept, base class and derived class, protected members, Constru	uctor and						
destructor	destructor in Derived Class Types of Inheritance Overriding Member Functions Public and							

destructor in Derived Class, Types of Inheritance, Overriding Member Functions, Public and Private Inheritance, Ambiguity in Multiple Inheritance, Virtual Base Class, Abstract Class

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Introduction to Polymorphism, Types of Polymorphism, operator overloading, Overloading Binary Operators, Function overloading,

Dinary Op	erators, Function overloading,	
Unit IV	Pointer and Run Time Polymorphism	5 hrs

Pointers: Declaring and initializing pointers, modify pointers, pointer arithmetic, accessing Array using pointer, Arrays of Pointers,

Run time polymorphism - Pointers to Base class, virtual function and its significance in C++.

Unit V Files 5 hrs

Stream and files, Stream Classes, Stream Errors, Disk File I/O with Streams, File Pointers, and Error Handling in File I/O, File I/O with Member Functions, Overloading the Extraction and Insertion Operators, Command-Line Arguments

Text Books:

- 1. Robert Lafore, "Object-Oriented Programming in C++", 4th edition, Sams Publishing, 2008, ISBN:0672323087 (ISBN 13: 9780672323089
- 2. E. Balagurusamy, "Object-Oriented Programming with C++", 8th edition, Graw-Hill Publication, 2020, ISBN 10: 9352607996 ISBN 13: 9789352607990

Reference Books:

- 1. Herbert Schildt, "C++ The complete reference", 4th Edition, McGraw Hill Professional, 2017, ISBN:978-00-72226805
- 2. Yashwant Kanetkar, "Let Us C++", 17th Edition BPB Publications, 2020, ISBN-10: 9388176642
- 3. Richard Grimes, "Beginning C++ Programming", Packt Publishing Ltd., 2017, ISBN 978-1-78712-494-3

e-Contents:

- 1. NPTEL Course on Programming in C++ https://onlinecourses.nptel.ac.in/noc21_cs02/preview
- 2. NPTEL Course on Programming in Modern C++ https://onlinecourses.nptel.ac.in/noc24 cs44/preview
- 3. Programming in C++ https://www.shiksha.com/online-courses/programming-in-c-by-nptel-course-nptel23

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	2	3	1	2	3	3	1	3
CO2	3	3	3	3	3	1	2	3	3	1	3
CO3	3	3	3	3	3	1	2	3	3	1	3
CO4	3	3	3	3	3	1	2	3	3	1	3
CO5	3	3	3	3	3	1	2	3	3	1	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

CO5

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Electronics and Telecommunication Engineering, Semester II

Course Code: ETE2402L01, Course Title: Semiconductor Devices and Sensors, Category: Program Specific Core Course

	Teaching	Evaluation Scheme							
L (Hr)	T (Hr)	P (Hr)	Cr	Exam	Theor	y Mai	rks	Prac l Ma	etica arks
(-11)	(222)	(222)			Max %	Ma Ma fo Pass	rks r	Max	Min Marks for Passin g
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Course Objectives: After successful completion of the course the student will be able to:

1. To impart knowledge of Diodes and Transistors with their characteristics and applications.

2. To design and configure combinational and sequential logic circuits.

3. To build a sensor based control system.

Course Outcomes: Student will:

CO1 Select rectifier diode for design of DC power supply, LED and Photodiode for optocoupler circuits in counting applications.

CO2 Relate BJT, JFET and MOSFET for amplification and switching actions.

CO3 Design combinational circuits like MUX, De-MUX, Encoder, Decoder

CO4 Design sequential logic circuits like mod -N counter.

Syllabus

Analyse RTD for food processing unit and load cell for electronics weighing machine.

Unit I	Diode Applications	6 hrs
Diode cur	rent equation, Rectifier circuits with and without filter, Diode as clipper an	nd clamper.
3-Pin IC v	voltage regulators, Working and application of Photodiode and LED.	
Unit II	Transistor	5hrs
BJT: conf	iguration, characteristics & Load line concept. Introduction to JFET, DMC	OSFET and
E MOSFI	ET. Op-AMP: introduction, block diagram & Parameters.	
Unit III	Boolean Algebra & combinational circuits	5 hrs
	Algebra and Standard representation of logical expression. Simplification (K map), Multiplexer, De multiplexer, Encoder, Decoder, Even Parity, Contractor.	
Unit IV	Sequential logic circuits	5 hrs
D-Flip F	lop & T-Flip Flop, Shift Registers: SISO, SIPO, PISO and PIPO,	Counters:
Asynchro	nous counter: Ring counter, Johnson counter, synchronous mod N counter	
Unit V	Sensors	5 hrs
Strain Ga Biosenson	tuge and Load cell, Temperature Sensors: Thermocouple RTD and 's	Thermistor.
Text Boo	ks	

- 2. R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication, 5th Edition 2022, ISBN-978-9355321770.
- 3.D. Patrnabis, "Sensors and Transducers", PHI Learning, 2nd edition, 2003, ISBN- 978-8120321984

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	3	-	-	-	-	-	1	-	-
CO2	3	_	_	_	_	_	_	_	1	1	_
CO2				_					1	1	
CO3	3	2	2	1	2	-	-	1	-	-	-
CO4	3	2	2	-	2	1	1	1	-	1	1
CO4	3	2	1	-	-	-	-	-	1	-	1

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Information Technology, Semester II Course Code: INT2402L01, Course Title: Fundamentals of Java **Programming, Category: Program Core Course**

	Teaching	Evaluation Scheme							
L	т	P			Theory	% Ma	rks	Practi Ma	cal % rks
(Hr)	(Hr)	(Hr)	Cr	Exa m	Max	Min Pa g	for ssin	Max	Min for Passing
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prerequisites: ESC2401L08, Basics of C/C++ Programming

Course Objectives: This course aims to build the basic introduction of Java programming language. Purpose of course are:

- 1. To learn object oriented program concepts and fundamentals of Java Programming.
- 2. To understand the concepts of classes and objects in Java Programming.
- 3. To learn the concepts of classes and objects in Java Programming.
- 4. To understand the concepts of exceptional handling in Java Programming.

5.	To learn the concepts of multithreading in Java Programming.						
Cours	Course Outcomes: After successful completion of the course the student will be able to						
CO1	Apply the fundamental concepts of Java programming language including						
	variables, data types, control structures, and methods.						
CO2	Use the concepts of classes, objects, members of a class and the relationships						
	among						
	them to write a code for finding the solution to specific problems.						
CO3	Demonstrate how to extend java classes and achieve reusability using Inheritance						
	and						
	Interfaces.						
CO4	Apply the concepts of Exceptional handling to develop efficient and error free						
	codes.						
CO5	Construct robust and faster programmed solutions to problems using the concept of						
	Multithreading.						

Syllabus

Unit I	Fundamentals of Java	6							
		hrs							
Overview of procedure and object-oriented Programming, Open Source Platform Features									
of Java Language. Introduction to the principles of OOP: Classes, Objects, Abstraction									
Encapsula	ation, Inheritance, Polymorphism. Keywords, Data types, Variables, Opera	ators,							
Expression	ons. Control Statements and Iteration Statements.								
Unit II	Classes, Objects, Arrays and Strings	6							
		hrs							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Classes & Objects: Class Fundamentals: Assigning Object Reference Variables, Parameter passing for methods, Nested and Inner Classes. Constructors: Parameterized Constructors, Method overloading, Constructors overloading, Recursion, **String**: String functions.

Arrays: One Dimensional array, Two Dimensional arrays.

Unit III	Inheritance and Interfaces	6
		hrc

Inheritance: Inheritance and its types, Concept of Super and subclass, inheriting Data members and Methods, making methods and classes final, Method overriding. Abstract classes, and methods. **Interfaces:** Defining an interface, extending interfaces, implementing interfaces, Interfaces vs. Abstract classes.

Unit IV Exception Handling 4 hrs

Exceptions: Need for exceptions, Checked Vs Unchecked exceptions, creating custom exceptions.

Unit V Multithreading 4

Multithreading: Introduction, Priorities and scheduling, Inter-thread communication, Thread Synchronization and its life cycle. Thread class Methods, Implementing Runnable, Extending thread.

Reference Books

- 1. Herbert Schildt, "Java-The Complete Reference", Tenth Edition, Oracle Press, Tata McGraw Hill Education.
 - 2. Anita Seth, B.L.Juneja, "Java: One Step Ahead", oxford university press.
- 3 D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press 2. Learn to Master Java by Star EDU Solutions
- 4.Core Java Volume I-Fundamentals "Cay S. Horstmann", 11th Edition

Text Books

- 1. Yashvant Kanetkar, "Let Us Java" 4th Edition ,BPB Publications.
- 2.E. Balguruswamy, "Programming with Java A primer", Fifth edition, Tata McGraw Hill Publication

NPTEL link:

https://onlinecourses.nptel.ac.in/noc22_cs47/preview

https://youtu.be/OjdT2l-

EZJA?si=7YQM7RtLIH5Cj6ET

https://youtu.be/J_d1fJy90GY?si=h7z55TbwDy3Td

XJW

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	1	-	2	-	-	-	1	-	2
CO2	2	2	2	-	2	-	-	-	1	-	2
CO3	2	2	1	-	2	-	1	1	1	-	2
CO4	2	2	2	1	2	-	-	-	1	1	2
CO5	2	2	1	1	2	1	-	-	1	1	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Instrumentation and Control Engineering, Semester II Course Code: ICE2402L01, Course Title: Measurements in Instrumentation, Category: Program Specific Core Course

	Teaching	g Scheme		Evaluation Scheme						
L	Т	P			Theor	ry % Marl	ΚS		ctical Aarks	
(Hr)	(Hr)	(Hr)	Cr	Exam	Max %	Min Marks f Passin		Max	Min marks for Passing	
2	0	0	2	CCE	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: ESC2401L03.

Course Objectives: Purposes of the course are

- 1. To study of measuring instruments used in Instrumentation and Control Engineering.
- 2. To understand the various parameters using electrical and electronic measurements.
- 3. Oscilloscope and its usage for various measurements in Instrumentation Applications.

Course Outcomes: After successful completion of the course units the student will CO1 Analyze static and dynamic characteristics of measurement instruments like

- voltmeters and ammeters for analysing loading effect.

 CO2 Measure resistance, capacitance and inductance of electrical circuits for signal analysis.
- CO3 Analyze measurements like voltage, current, frequency, phase of electrical circuits using cathode ray oscilloscope for signal conditioning requirements.
- CO4 Use electronic instruments for analog and digital measurements for sensors signal conditioning.
- CO5 Use recording instruments for recording and analyzing various process and electrical signals

Syllabus

Unit I Fundamentals of Measurements

6 hrs

General Measurement System, Classification of Instruments, Static and Dynamic characteristics of instruments, Error: limiting error, Types of Errors. Loading effect: Input impedance, output impedance, loading effects of series and shunt connected instruments, Calibration: Definition, calibration report & certification, traceability and traceability chart.

Unit II Electrical Measurement

/ nrs

General features and Classification of electro mechanical instruments. Principles of Moving coil, moving iron, dynamometer type. Low, high and precise resistance measurement, Megger, Ohmmeters, Classical AC bridges: Inductance and capacitance measurements.

Unit III | Oscilloscopes

7 hrs

General purpose oscilloscope Block Diagram, Cathode Ray Tube, deflection sensitivity, front panel controls, Oscilloscope Probes 1:1 and 10:1, Dual trace CRO, ALT and CHOP modes, measurement of electrical parameters like voltage, current, frequency and phase, frequency measurement. Demonstrations of Oscilloscope. Digital Storage oscilloscope block diagram, sampling rate, bandwidth, roll mode.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Unit IV | **Electronic Measurements**

6 hrs

Essentials of electronic instruments, advantages of electronic instruments, Electronic Multimeters, Analog and digital multi-meters, Digital frequency meters. Digital LCR meter, Q-Meter, Digital wattmeter and energy meters.

Unit V Recording Instruments

6 hrs

Classification of recorder, Basic Strip chart recorder, Types of Strip chart recorder, XY Recorder, Different marking mechanism in recorder, Application of recorders

Reference Books

- 1. A. K. Shawney, A course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai and Sons, 2015.
- 2. H. S. Kalsi, Electronic Instrumentation, McGraw Hill Education; 3rd Edition, 2017.
- 3. Albert D. Helfrick, William D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, 1st Edition, Pearson, 2016.
- 4. Ernest O Doebelin and Dhanesh N Manik, MeasurementSystems: Application and design, McGraw Hill publication, 5th Edition.
- 5. David A. Bell, Electronic Instrumentation and Measurements, Oxford University Press India; 3rd Edition.

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	1	1				1		1	1	2
CO2	3	2		1						1	3
CO3	3	2	1		1					1	2
CO4	2	2				1		1		1	2

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

First Year (FY) B Tech in Robotics and Automation, Semester II Course Code: RNA2402L01, Course Title: Elements of Mechanical Engineering, Category: Programme Specific Core Course

	Teaching	g Scheme		Evaluation Scheme						
L	Т	P			Theor	y Mar	ks		ctical arks	
(Hr)	(Hr)	(Hr)	Cr	Exam Max % Marks for Passing		rks r	Max	Min Marks for Passing		
2	0	0	2	CCE	50	20				
26	0	0	Total: 26	ESE	50	20	40	-	-	

Prerequisites: Physics, Mathe	ematics, Electrical
--------------------------------------	---------------------

Course Objectives:

- 1. To provide students with a solid understanding of the fundamental properties of fluids and the various types of fluid flows.
- 2. To enable students to explain the environmental and economic impacts of electric vehicles.
- 3.To familiarize students with different manufacturing processes, and to recognize safety measures in cutting processes.
- 4. To enable students to explain and differentiate between various additive manufacturing techniques

Course Outcomes: After successful completion of the course the student will be able to CO1 Analyze and solve problems related to fluid properties, statics, and dynamics in engineering contexts.

- CO2 Understand the structure, components, and economic aspects of electric vehicles.
- CO3 Describe various manufacturing processes and identify associated safety measures and
- CO4 Demonstrate rapid prototyping techniques and their applications in modern manufacturing.
- CO5 Demonstrate appropriate level of knowledge of Additive Manufacturing process

Syllabus

Unit I **Fluid Engineering** 6 hrs Introduction to Fluid Engineering, Properties of Fluids, types of fluids. Fluid statics: measurements of pressure and flow. Fluid Dynamics: Types of Fluid Flows, Bernoulli's Equation, Momentum Equation. Fluid properties, pressure, density and viscosity, viscous and turbulent flow, pump and compressor. Unit II **Electric Vehicle** 7 hrs Overview of Electric Vehicles, Environmental and Economic Impact, Electric Vehicle Components, electric Vehicle Drivetrain, Charging infrastructure and technology, Cost Analysis of production. Unit III **Basic Manufacturing Processes** 7 hrs

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Introduction to manufacturing, Classification of Manufacturing processes, Introduction to Carpentry, Lathe, milling and drilling, Micromachining, Grinding and finishing processes. Safety measures in cutting processes. Machining Defects in mentioned processes.

Unit IV Introduction – Additive Manufacturing 6 hrs

Overview – History – Need-Classification -Additive Manufacturing Technology in product development Materials for Additive Manufacturing Technology – Tooling – Applications

Unit V	Rapid Prototyping	6
		hrs

Overview of Rapid Prototyping, Classification of RP, Materials for RP, Stereo lithography, 3D Printing, Selective Laser Sintering, Fusion Deposition Modelling, 7 AM Steps defined by ASTM

Reference Books

- 1. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", 9th Edition, Laxmi Publication, 1990, ISBN 81-7008-311-7.
- 2. Khurmi R. S. and Gupta J. K., "Textbook of Refrigeration and Air Conditioning", S. Chand and Co.
- 3. Jain R.K., "Production Technology", Khanna Publishers, ISBN 81-7409-099-1.
- 4. Rao P.N.," Manufacturing Technology & Foundry, Forming & Welding", Vol I, II, Tata McGraw Hill Publishing Co. ISBN-0 07 451863 1
- 5. Electric Vehicles: And the End of ICE age, by Anupam Singh, Adhyyan Books Publisher, 2019.
- 6. Andreas Gebhardt and Jan-Steffen Hötter, "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing" Hanser Publishers, Munich, 2016.
- 7. D. T. Pham and S.S. Dimov, "Rapid Manufacturing" Springer, 2001.

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2		2		2		1	2		
CO2	3		2		2			2	2	2	
CO3	2	2			2		2		3		2
CO4	3		3	2			3		2		
CO5	3		3	2			3		2		

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Course Code: MNE2042L01, Course Title: Basic Mechanical Engineering, Category: Program Core Course

	Evaluation Scheme								
L (Hr)	Т	P (Hr)	Cr		Theory Marks			Practical Marks	
	(Hr)			Exam	Max	Min Mar for Pass		Max	Min Marks for Passing
2	0	0	2	CCE	50	20			
26	0	0	Total: 26	ESE	50	20	40	-	-

Prere	Prerequisites: Basics of Chemistry and Physics of HSC level								
Cours	Course Objectives: Purposes of the course are								
1.	To explain the basic concept of engineering thermodynamics and its application								
2.	To get acquainted with vehicle systems.								
3.	To introduce manufacturing processes applying proper method to produce components.								
4.	1. To be able to select and compare domestic appliances								
Cours	Course Outcomes: After successful completion of the course units the student will								
CO1	Apply basic laws of thermodynamics, heat transfer for day-to-day life applications.								
CO2	Understand the basic modes of heat and mass transfer.								
CO3	Illustrate various basic parts and transmission system of a road vehicle								
CO4	Discuss several manufacturing processes and identify the suitable process for various								
	industrial applications								
CO5	Interpret various types of mechanisms and its applications for household usage.								

Syllabus

	Synabas						
Unit I	Introduction to Thermodynamics	4 hrs					
Introduction To Thermodynamics, Laws of Thermodynamics (Zeroth, First, Second Law), Heat							
Engine, He	eat Pump, Refrigerator (Numerical)						
Unit II	Heat Transfer						
Modes of h	eat transfer: conduction, convection and radiation, Fourier's law, Newton's law of	of cooling,					
Stefan Bolt	zmann's law. (Numerical),Boiler						
Unit III	Automobile Engineering	7 hrs					
Introduction to IC Engine, two stroke and Four stroke engines (Petrol, Diesel), Engine Components							
and their specification, Chassis, Steering System, Suspension System, Braking, Fuel, Tyre, Clutch,							
Propeller Shaft, Gear Box, Axle. Introduction of Electric and Hybrid Vehicles. Systems and							
subsystems of electrical and hybrid vehicles.							
Unit IV	Manufacturing Processes	6 hrs					
Casting, Forging, Metal forming (Drawing, Extrusion, etc.), Sheet metal working, Metal joining, etc.							
Metal cutting processes and machining operations Turning, Milling and Drilling, etc. 3D printing,							
rapid proto	typing, IOT.						
Unit V	Components and Mechanism of Household devices	6 hrs					
Gears - Pri	nters, etc.; Valves - Water tap, etc.; Application of levers - Door latch.						
Electric/	Solar energy - Geyser, Water heater, Electric iron, etc. Introduction of pump, con	npressor,					

Compressors - Refrigerator, Water cooler, AC unit; Pumps - Water filter, Blower - Vacuum cleaner,

DYP D. Y. PATIL COLLEGE OF ENGINEERING, AKURDI

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

Kitchen Chimney; Motor -Washing machines

Introduction of pump, compressor, Compressors - Refrigerator, Water cooler, AC unit; Pumps - Water pump for overhead tanks, Water filter, Blower - Vacuum cleaner, Kitchen Chimney; Motor - Washing machines

Text Books

- 1. Agrawal, Basant and Agrawal, C. M., (2008), "Basics of Mechanical Engineering", John Wiley and Sons, USA ,ISBN 13 978-8126518784
- 2. Rajput, R.K., (2007), "Basic Mechanical Engineering", Laxmi Publications Pvt. Ltd , ISBN-13: 978-8131803592

Reference Books

- 1. Khurmi, R.S., and Gupta, J. K., "A Textbook of Thermal Engineering", S. Chand & Sons, ISBN 13 9788121913379
- 2. Incropera, F. P. and Dewitt, D.P., (2007), "Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley and Sons, USA, ISBN 13: 9780470881453.
- 3. Groover, Mikell P., (1996), "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", Prentice Hall, USA, ISBN-13: 978-0133121827
- 4. Norton, Robert L., (2009), "Kinematics and Dynamics of Machinery", Tata McGrawHill, ISBN 13: 978-1-269-374507
- 6. Juvinal, R. C., (1994), "Fundamentals of Machine Component Design", John Wiley and Sons, USA, ISBN-. 13: 978-1118012895
- 7. Ganeshan, V., (2018), "Internal Combustion Engines", McGraw Hill, ISBN: 9788189928469
- 8. https://onlinecourses.nptel.ac.in/noc24_me104/preview

Scheme for Theory Examination

Component	Level	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Total	Passin g
Continuous Comprehensive Evalution(CCE)	Faculty	10	10	10	10	10	50	20
End Semester Examination (ESE)	Institute	10	10	10	10	10	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	03	03							03		03
CO2	03	03								02	03
CO3	03	03			02			02	03		03
CO4	03	03	03							02	03
CO5	03	03	03							02	03