

B Te	ech in Robotics and Autom	atior	ı Engi	neeri	ng S	S Y B T	ech (2	024 (COU	RSE)		
	D Y Patil Col											
	Second Year Engineer					III (202						
		T	eaching	s Scher	ne		E	valuat	ion So	cheme		
Course Code	Course							eory 9 /Iarks			ctical Aarks	
Course Coue	Course	L	Т	Р	Cr	Exam	Max		n for ass	Max		1 for ass
RA124PC301	Metrology and Quality Control	3	0	0	3	CCA	50	20	40			
						ESE	50	20				
RA124PC301	Metrology and Quality	0	0	2	1	CCA				50	20	40
	Control Lab	Ŭ	Ű		-	ESE				50	20	10
RA124PC302	Engineering Mathematics-III	3	0	0	3	CCA	50	20	40			
	Widthematics-III					ESE	50	40				
RA124PC303	Strength of Materials	3	0	0	3	CCA	50	20	40			
	_					ESE	50	20				
			_	_		CCA	50	40	10			
RA124MDM301	Robotics Engineering	2	0	0	2	ESE	50	40	40			
						CCA	50	20				
RA124OE301	3D Printing	3	1	0	4	ESE	50	20	40			
RA124EEM301	Entrepreneurship/ Economics	2	0	0	2	CCA	50	20	40			
	and Management 1					ESE	50	20				
VEC1	Sustainable Development - 1	2	0	0	2	CCA	50	2	0			
RA124FEP301	Basic Robotics Workshop (FAB Lab)	0	0	4	2	CCA	100	4	0			
NCMC1	Design Thinking	1	0	2	0	CCA	50	20				
NCMC2	Professional and Technical Communication	0	0	2	0	CCA	50	20				
	Total	19	01	10	22				•			
			1	Hrs								
L	Lecture	The	ory	20								
Т	Tutorial	Prac	ct/Lab	10								
Р	Practical	Tota	վ	30								
Cr	Credits											
NC	Non Credit Course (Pass/Fail)											
~~.	Continuous and											
CCA	Comprehensive Assessment											
ESE	End Semester Examination										L	

B Te	ch in Robotics and Autom	ation 1	Engir	neerin	g S	Y B Tee	ch (202	24 C	OUF	RSE)		
	D Y Patil Col											
	Second Year Engineer					V(2024						
		Теа	aching	Schen	ne					heme		
Course Code	Course	_						eory 9 Iarks			Practical % Marks	
		L	Т	Р	Cr	Exam	Max		n for ass	Max	Min for Pass	
RA124PC401	Industrial Electronics and Electrical Technology	3	0	0	3	CCA	50	20	40			
	Industrial Electronics					ESE CCA	50	20		50	20	
RA124PC401	and Electrical Technology Lab	0	0	2	1	ESE				50	20	40
RA124PC402	Computer Graphics for Robotics	3	0	0	3	CCA	50	20	40			
						ESE CCA	50	20		50	20	
RA124PC402	Computer Graphics for Robotics Lab	0	0	2	1	ESE				50 50	20 20	40
RA124PC402	Design of Machine Elements	2	0	0	2	CCA	50	20	40	50	20	
10112110102		2	Ŭ	Ū	2	ESE	50	20				
RA124MDM402	Mechatronics and Microcontroller	2	0	0	2	CCA ESE	50 50	20 20	40			
RA124OE402	Financial Management and Costing	2	0	0	2	CCA ESE	50 50	20 20	40			
RA124CSEC403	Robot Operating System	1	0	2	2	CCA	100	40				
HSM2401P01	Soft Skills: Workplace and Life Readiness Category: Ability Enhancement Course	1	0	2	2	CCA	100	40				
	Entrepreneurship/Economics	2	0	0	2	CCA	50	20	40			
RA124EEM402	and Management 2	2	0	0	2	ESE	50	20	40			
VEC2	Sustainable Development - 2	2	0	0	2	CCA	50	20				
NCMC3	Robot Software Simulation	0	0	2	0	CCA	50	20				
NCMC4	Professional and Technical Communication	0	0	2	0	CCA	50	20				
	Total	18	0	12	22							
				Hrs								
L	Lecture	Theor		18								
Т	Tutorial	Pract/	/Lab	12								
Р	Practical	Total		30								
Cr	Credits											
NC	Non Credit Course (Pass/Fail)											
	Continuous and											
CCA	Comprehensive Assessment											
ESE	End Semester Examination											

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Cou	rse Category				Course	e Cod	e	RA124P	C301
Co	ourse Title	Metrology &	& Quality Cont	rol					
Teachi	ng Scheme				Evalu	ation	Sche	eme	
					Theor	y Mar	ks		ctical arks
L	Т	Р	Cr	Exam	Max	Mi Mai for I	rks	Max	Min for Pass
3	0	0	3	CCA	50	20			
	Tota	al Hours		ESE	50	20	40	-	-
39	0	0	Total hrs: 39		100				
Prerec	quisites:								
 To e interch To i measur To i measur 	rds, measuring in explain the concep nangeability. mpart students kr rements& advance mpart knowledge provide knowledge	pts of limits, nowledge of ced metrolog of different	fits, tolerances& special measurin y quality control t	& their in ng device tools & to	nportance es for sur echnique	e in m face fi s.	anufa inish	acturing	
Cours	e Outcomes: Aft	er successfu	1 completion of	the cours	e the	B1/	om'	s Cogn	itive
	t will be able to	er successiu	r completion of			Lev			criptor
CO1	Analyze the work various linear and measurements.						4		lyse
CO2	Design limit gaug	es					6	Des	ign
CO3	Measure and eval parameters, Screw tools	uate surface to	-				5		luate
CO4	Evaluate the impaproductivity and c			s on organ	izational		5	Eva	luate
CO5	Analyze different variations and asso	types of contr	rol charts to ident	2 I	S		4	Ana	lyse
i			Syllabus			÷		·	

Unit I	Introduction to Metrology	8 hrs
	Meaning of Metrology, Precision, Accuracy, Errors in Measurement,	
	Calibration,	

B Tee	ch in Robotics and Automation Engineering S Y B Tech (2024 COUR	RSE)
	Linear Measurement: Standards, Classification of Standards, Precision and Non Precision Measuring instrument, Slip Gauges. Manufacturing of slip gauges Angular Measurement: Sine bar, Sine Center, Uses of sine bars, angle gauges, Auto Collimator, Angle Dekkor. Inspection of Geometric parameters: Straightness, flatness, Parallelism, Concentricity, Squareness and Circularity. Alignment testing- lathe/milling/ drilling m/c Comparators: Uses, Types, Advantages and Disadvantages of various Comparators.	
Unit II	Limits, Fits and Tolerances	7 hrs
	Meaning of Limit, Fits and Tolerance, Cost -Tolerance relationship, concept of Interchangeability, selective assembly, Indian Standard System. Design of limits Gauges: Types, Uses, Taylor's Principle, Design of Limit Gauges, Introduction to auto gauging systems. Interferometry: Introduction, Flatness testing by interferometry, NPL Interferometer, laser interferometer	
Unit III	Form Measurement & Advances in Metrology	8 hrs
	Surface Texture, methods of evaluation of surface roughness, Grades of Roughness, Specifications, Tomlinson's Surface Recorder, Taylor- Hobson Surface Meter and Talysurf for measuring all characteristics of surface texture. Screw Thread Metrology: External Screw Thread terminology, effective diameter measurement methods, Application of Tool Maker's Microscope, Use of Profile Projector. Gear Metrology: Spur Gear Parameters, Gear tooth thickness measurement: Gear tooth Vernier caliper, Constant chord method, Span Micrometer, Base tangent method. Advanced Metrology-Universal measuring machine, Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.	
Unit IV	Introduction to Quality	8 hrs
	Meaning of Quality, Quality of Product, Quality of Service, Cost of Quality, Value of Quality, Role of Quality in Present day environment. Total quality management (T.Q.M):- Approaches-Deming's Approach, Juran's Approach, Seven quality tools and new seven quality tools, Q.F.D., Quality Circles, Kaizen, six sigma, T.P.M.	
Unit V	Statistical Quality Control	8 hrs
	Introduction to Statistical Quality Control: Control Charts, X, R, P and C Charts, Sampling inspection, OC Curves and Sampling Plans, Process Capability Index (PCI), Concept, Methods of determining PCI and uses of PCI.	

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

References

Text Books:

- 1. K.J.Hume, "Engineering Metrology", Kalyani publication ISBN 8170290015
- 2. K.W.B.Sharp, "Practical Engineering Metrology", Pitman Publication
- 3. F. M. Gryna, R. Chua & J. Defco, "Jurans Quality Planning and Analysis for Enterprise Quality",

McGraw Hill series. ISBN0070618488

References Books:

- 1. R.K. Jain, "Engineering Metrology", Khanna Publication.
- 2. I.C.Gupta, "A Text book of Engineering Metrology", Dhanpat Rai and Sons.
- 3. Kaoru Ishikawa, "Guide to Quality Control", Asian Productivity Organisation, Series,
- 4. Juran's Quality Handbook

Scheme for Examination

Component	Level	Unit	Unit	Unit	Unit	Unit	Total	Pass
		Ι	II	III	IV	V		
	Faculty	5	5	5	5	5	25	
CCA	Demontres out	U	Г1		UT2		25	20
	Department	5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	2	1	1	2	3	2	2	2	2
CO2	2	3	3	2	2	2	1	1	3	2	3	3	2	2
CO3	3	3	2	3	2	2	2	2	3	3	2	2	3	3
CO4	2	3	2	3	3	3	2	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	2	2	3	3	3	2	2	2

3: High, 2: Moderate, 1: Low, 0: No Mapping

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Title of	the Cou	urse: N	letrolo	ogy an	d Qual	lity Co	ntrol L	ab			L	Т	P	Credit
Course	Code	• D A 17	04DC30	11							0	0	2	1
					ring G	raphic	s. Ma	chine	Drawi	ng, and	Manu	factur	ing	
Techno		quisi		Billee	ing o	rupine	, 1 . 1 .	••••••	Diami		1,14110	iuotui		
Course	<u> </u>	ption:												
The Me	trology	y & Q	uality	Cont	rol La	b is a l	nands-	on lab	orator	y course	e desig	ned to	com	olement
										trol lect				
										in meas	surem	ent tec	hniqu	ies,
inspecti				qualit	y cont	rol me	ethodo	logies.						
Course				1 1.		•	· · · ·						. 1	
devices.		tudent	s with	hands	s-on ex	perien	ce usin	g vario	ous me	trology i	nstrum	ients ai	nd me	asuring
		ractica	l skill	s in ne	rformi	ng me	asurem	ents a	nd insn	ections of	of com	nonent	ç	
										imit gaug		ronom		
Course						0	· F	• • • • • •	-	6				
		8												
CO	After the completion of the course the student should be Bloom's Cognitive										tive			
	able (to									leve	l De	scrip	tor
C01	Analy	ze the	precis	sion m	neasure	ment t	echnig	ues to	accurat	telv	4	An	alyze	
										s using			v	
	appro	priate	instrur	nents.										
CO2	Analy	yze in	terfer	ence f	fringes	s obtai	ned fr	om op	tical f	latness	4	An	Analyze	
									f surfa					
CO3			-	-		s of g	iven co	ompos	ite obj	ject	5 Evaluate			te
	using	.	`	/							5 Evaluate			
CO4									a and l		5			
CO5			•			-			s of th	reads	5	te		
							Micro		r .					
CO6				•	<u>v</u>		geome				4		alyz	
CO7		•			-				oordin	ate	5	Ev	alua	te
		-					easurir	ig con	plex,					
	Ŭ		-		nponer		0 11	20						
CO8	•			-			for dif		oonst !1	:+	4	An	alyze	
									capabil	process				
	stabili			uniqu		insule	produc	i quall	iy anu j	p100058				
CO-PC		2									I			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO	2 PSO3
CO1	3	3	2	3	3	2	1	1	3	2	3	3	2	2
									Ŭ	_	ĩ			
CO2	3	3	2	3	3	3	1	1	2	3	1	3	2	2
CO3					2		1	1			2	2		
	3	3	2	3	3	3	1	1	3	3	3	3	2	2

	Tech i	n Ro	botics	and	Auton	natior	ı Engi	neerii	ng S	Ү В Те	ech (20	24 CC)UR	SE)
CO4	3	3	2	3	3	3	1	1	2	3	3	3	2	2
	5	5	2	5	5	5	1	1	2	5	5	5	2	2
CO5	3	3	3	3	3	2	1	1	3	3	3	3	2	2
	_		_						_	_	_			
CO6	3	3	3	3	3	3	1	1	2	3	3	2	3	2
CO7	3	3	3	3	3	3	3	1	3	3	3	2	3	2
COR	-	-	-	-	-		-	-						
CO8	3	3	2	3	3	3	2	2	3	2	3	2	3	2
Accord	nonta i													
Assess														
Teache					г 1			1	г	1.0	/ F		<i>.</i>	
One con	-) and o	one Er	nd Semo	ester E	xamin	atior	(ESE)
having		nd 50	% we	ights	respec	tively								
Assess	sment							Aarks						
CCA							5							
ESE							-	0						
CCA ar	e basec	l on p	ractic	al per	forme	d/ Qui	iz/ Mi	ni-Pro	ject as	signed/	Prese	ntation	/ Gr	oup
Discuss	sion/ In	ternal	oral	etc.										
ESE: A	ssessm	ent is	based	l on o	ral exa	imina	tion							
Course	Conte	nts:												
Experi	ment N	lo. 1:												2 Hrs
Aim an														
Aim: T	•			limen	sions &	& ang	le of g	iven c	ompos	site par	t using			
										per per				
precisic		uring	r instri	ument	S									
precisio Objecti		suring	g instr	ument	s.				1					
Objecti	ives:	-				e of n	recisio	n mea	-	instru	ments	such as	2	
Object i 1. To fa	ives: miliari	ze stu	Idents	with	the us				suring				5	
Object 1. To fa calipers	ives: miliari 5, micro	ze stu mete	idents rs, and	with d gaug	the us				suring				5	
Object 1. To fa calipers for angu	ives: miliari s, micro ular me	ze stu omete asure	idents rs, and ments	with d gaug s.	the us ges for	accui	ate lir	iear m	suring	ements	and Si	ne bar		
Object 1. To fa calipers for angu 2. Stude	ives: miliari s, micro ular me ents wil	ze stu omete asure Il lear	idents rs, and ments m to in	with d gaug s. nterpre	the use ges for et mea	accui	rate lin nent da	near m ata, em	suring easure	ements ze the s	and Sin	ne bar ance o		
Object 1. To fa calipers for angu 2. Stude proper l	ives: miliari s, micro ular me ents wil handlin	ze stu omete asure Il lear	idents rs, and ments m to in	with d gaug s. nterpre	the use ges for et mea	accui	rate lin nent da	near m ata, em	suring easure	ements ze the s	and Sin	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom	ives: miliari , micro ular me ents wil handlin nes:	ze stu omete asure Il lear g of i	idents rs, and ments m to in nstrui	with d gaug s. nterpro ments,	the use ges for et mea , and u	accun suren nders	rate lin nent da tand e	near m ata, en rror so	suring easure uphasi	ze the s in mea	and Sin	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcon 1.Stude	ives: amiliari a, micro ular me ents wil handlin nes: nts will	ze stu omete asure Il lear g of i l be a	idents rs, and ments n to in nstrui	with d gaug s. nterprenents, accur	the use ges for et mea , and u rately 1	accun surem nders neasu	rate lir nent da tand e re line	near m ata, en rror so	suring easure uphasi	ze the s in mea	and Sin	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice	ives: miliari s, micro ular me ents wil handlin nes: nts will ciency i	ze stu mete asure Il lear g of i I be a n han	idents rs, and ments n to in nstrun ble to adling	with d gaug s. nterpro- nents, accur precis	the use ges for et mea , and u rately 1	accun surem nders neasu	rate lir nent da tand e re line	near m ata, en rror so	suring easure uphasi	ze the s in mea	and Sin	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profic Theore	ives: amiliari a, micro ular me ents wil handlin nes: nts will ciency i ctical B	ze stu omete asure ll lear g of i l be a n han ackg	idents rs, and ments n to in nstrun ble to idling round	with d gaug s. nterpre nents, accur precis	the use ges for et mea , and u ately 1 sion in	accur suren nders neasu strum	rate lin nent da tand e re line lents.	near m ata, en rror so ear din	suring easure nphasi ources nensio	ze the s in means.	and Sin ignific sureme	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profic Theore 1. Over	ives: miliari a, micro ular me ents wil handlin nes: nts will ciency i tical B view of	ze stu omete asure Il lear g of i I be a n han ackg f mea	idents rs, and ments n to in nstrun ble to adling round surem	with d gaug s. nterpro- nents, accur precis l: nent co	the use ges for et mea , and u rately 1 sion in	accur suren nders neasu strum s, unit	rate lin nent da tand e re line lents.	near m ata, en rror so ear din	suring easure nphasi ources nensio	ze the s in means.	and Sin ignific sureme	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profic Theore 1. Over 2. Discu	ives: amiliari a, micro ular me ents wil handlin nes: nts will ciency i ciency i etical B view of ussion o	ze stu omete: asure Il lear g of i I be a n han ackg f mea of me	idents rs, and ments n to in nstrun ble to adling round surem	with d gaug s. nterpro- nents, accur precis l: nent co	the use ges for et mea , and u rately 1 sion in	accur suren nders neasu strum s, unit	rate lin nent da tand e re line lents.	near m ata, en rror so ear din	suring easure nphasi ources nensio	ze the s in means.	and Sin ignific sureme	ne bar ance o		
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profic Theore 1. Over 2. Discu Experin	ives: amiliari a, micro ular me ents will handlin nes: nts will ciency i ciency i ciency of view of ussion of mentat	ze stu mete asure ll lear g of i l be a n han ackg f mea of me ion:	idents rs, and ments n to in nstrun ble to idling round surem asurir	with d gaug s. nterpre- nents, accur precis l: nent cong tech	the use ges for et mea , and u ately 1 sion in oncept	accur suren nders neasu strum s, unit s.	rate lin nent da tand er re line ents. ts, and	near m nta, em rror so ear dim precis	suring easure phasi ources nensio sion in	ze the s in mea ns.	and Sin ignific sureme nts.	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profic Theore 1. Over 2. Discu Experin 1. Use p	ives: miliari a, micro ular me ents wil handlin nes: nts will ciency i view of ussion o mentat precisio	ze stu omete: asure ll lear g of i l be a n han ackg f mea of me ion: on ins	idents rs, and ments n to in nstrun ble to adling round surem asurir trume	with d gauges. nterpro- nents, accur precis l: nent cong tech nts (e.	the use ges for et mea , and u rately 1 sion in oncept nnique .g.Ver	accur suren nders neasu strum s, unit s.	rate lin nent da tand er re line ents. ts, and alipers	near m nta, em rror so ear dim precis	suring easure phasi ources nensio sion in	ze the s in mea ns.	and Sin ignific sureme nts.	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice Theore 1. Over 2. Discu Experin 1. Use p bar) to	ives: umiliari s, micro ular me ents will handlin nes: nts will ciency i tical B view of ussion of mentat precisio measur	ze stu omete: asure ll lear g of i l be a n han ackg f mea of me ion: on ins re din	idents rs, and ments rn to in nstrun ble to idling round surem asurir trume nensio	with d gaug nterpro- nents, accur precis l: nent cong tech nts (e. ons of	the use ges for et mea , and u ately 1 sion in oncept nnique .g.Ver specif	accur suren nders neasu strum s, unit s. nier ca	rate lin nent da tand e re line lents. ts, and alipers ojects.	ata, em rror so ear din precis	suring easure ophasi ources nensio sion in omete	ze the s in mea ns. hstrume	and Sin ignific surements. ht gau	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice Theore 1. Over 2. Discu Experin 1. Use p bar) to 2. Reco	ives: miliari a, micro ular me ents will handlin nes: nts will ciency i ctical B view of ussion of mentat precision measure	ze stu mete asure ll lear g of i l be a n han ackg f mea of me ion: on ins re din suren	idents rs, and ments n to in nstrun ble to adling round surem asurir trume nensic nents	with d gaug s. nterpre- nents, accur precis l: nent cong tech nts (e. ons of and pe	the use ges for et mea , and u ately 1 sion in oncept nnique .g.Ver specif	accur suren nders neasu strum s, unit s. nier ca	rate lin nent da tand e re line lents. ts, and alipers ojects.	ata, em rror so ear din precis	suring easure ophasi ources nensio sion in omete	ze the s in mea ns. hstrume	and Sin ignific surements. ht gau	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice Theore 1. Over 2. Discu Experin 1. Use p bar) to	ives: miliari a, micro ular me ents will handlin nes: nts will ciency i ctical B view of ussion of mentat precision measure	ze stu mete asure ll lear g of i l be a n han ackg f mea of me ion: on ins re din suren	idents rs, and ments n to in nstrun ble to adling round surem asurir trume nensic nents	with d gaug s. nterpre- nents, accur precis l: nent cong tech nts (e. ons of and pe	the use ges for et mea , and u ately 1 sion in oncept nnique .g.Ver specif	accur suren nders neasu strum s, unit s. nier ca	rate lin nent da tand e re line lents. ts, and alipers ojects.	ata, em rror so ear din precis	suring easure ophasi ources nensio sion in omete	ze the s in mea ns. hstrume	and Sin ignific surements. ht gau	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice Theore 1. Over 2. Discu Experin 1. Use p bar) to 2. Reco	ives: umiliari s, micro ular me ents wil handlin nes: nts will ciency i tical B view of ussion o mentat precisio measur rd mea s and D	ze stu omete: asure ll lear g of i l be a n han ackg f mea of me ion: on ins re din suren Discus	idents rs, and ments in to in nstrun ble to idling round surem asurir trume nension nents a sions	with d gauges. nterpro- nents, accur precise l: nent cong tech nts (e. ons of and poession	the use ges for et mea , and u rately n sion in oncept nique .g.Ver specif erform	accui suren nders neasu strum s, unit s. nier ca ied ot repea	rate lin nent da tand en re line ents. ts, and alipers ojects. nted tri	ata, em rror so ear dim precis s, micr als to	suring easure phasi ources nensio sion in omete assess	ements ze the s in mea ns. strume ers, heig precisi	and Sin ignific surements. ht gau	ne bar cance o ent.	of	
Objecti 1. To fa calipers for angu 2. Stude proper l Outcom 1.Stude 2.Profice Theore 1. Over 2. Discu Experin 1. Use p bar) to 2. Reco Results	ives: umiliari s, micro ular me ents will handlin nes: nts will ciency i stical B view of ussion of mentat precisio measur rd mea s and D ent the p	ze stu omete: asure ll lear g of i l be a n han ackg f mea of me ion: on ins re din suren biscus measu	idents rs, and ments in to in nstrun ble to idling round surem asurir trume nension nents sions ureme	with d gaug nterpro- nents, accur precis l: nent cong tech nts (e. ons of and pe : nts an	the using s for et mean and u ately r sion in oncept nique .g.Ver specifierform d calc	accur suren nders neasu strum s, unit s. nier ca ied ob repea ulate a	rate lin nent da tand e re line ents. ts, and alipers ojects. nted tri averag	ata, em nta, em rror so ear dim precis s, micr als to ges and	suring easure ophasi ources nensio sion in omete assess I devia	ements ze the s in mea ns. hstrume ers, heig precisi ations.	and Sin ignific surements. ht gau	ne bar cance o ent. ge, sin	of	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	RSE)
Conclusion: Precision instruments provide reliable measurements when used	
correctly, and errors can be minimized through proper handling.	
Experiment No. 2:	2 Hrs.
Aim and Objectives:	
Aim: To study and demonstrate the identification and characterization of surfaces	
using an optical flat.	
Objectives:	
1. Learn the principles of light interference in surface identification.	
2.Understand how fringe patterns are formed and interpreted.	
Outcomes:	
Students will be able to interpret interference fringes to assess flatness and smoothness.	
Theoretical Background:	
A discussion of the concept of optical flats, including their definition, how they work, and their role in optical testing. Explain the phenomenon of interference and	
how it allows for the assessment of surface flatness through the observation of	
fringe patterns.	
Experimentation:	
1. Place the optical flat over the specimen in a controlled lighting environment.	
2. Observe the interference fringes formed between the optical flat and the	
specimen surface.	
3. Interpret the fringe patterns to identify surface irregularities or deviations from	
flatness.	
Results and Discussion: Discuss the observed fringe patterns and their correlation	
with the surface characteristics.	
Conclusion : Optical flats provide a highly accurate method for identifying surface	
characteristics. Interpreting interference fringes is a reliable technique for	
assessing surface flatness and smoothness in precision components.	
ussessing surface nations and smoothness in precision components.	
Experiment No. 3:	2 Hrs.
Aim and Objectives:	
Aim: To study Determination of geometry & dimensions of given composite	
object using profile projector.	
Objectives:	
1. To set up and operate a profile projector.	
2. To measure dimensions and geometry of various components.	
Outcomes:	
1. Students will gain skills in using profile projectors for dimensional analysis.	
2.Students will be able to inspect component profiles.	
Theoretical Background:	
Projection principles and magnification.	
Experimentation:	
Measure dimensions of a complex profile.	
Results and Discussions:	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	RSF)
1. Present analysis and dimensions derived from profile projection.	KSE)
2. Discuss accuracy and potential applications of the technology.	
Conclusion : Profile projectors offer accurate inspection of component shapes.	0 II
Experiment No. 4:	2 Hrs.
Aim and Objectives:	
Aim: To measure the surface roughness of the given specimens using surface	
roughness Tester.	
Objectives:	
1.Understand the concept of surface texture.	
2.Evaluate surface roughness parameters like Ra and Rz.	
Outcomes:	
Students will be able to derive Ra and Rz values and assess surface quality.	
Theoretical Background:	
1. Overview of different roughness parameters.	
2. Types of surfaces and roughness measurement techniques.	
Experimentation:	
1. Use a surface roughness tester to measure surface finish on different specimens.	
2. Record and analyze data.	
Results and Discussions:	
Analyze surface quality based on measured parameters.	
Conclusion : Surface finish parameters were measured using surface roughness	
tester.	
	0 II
Experiment No. 5:	2 Hrs.
Aim and Objectives:	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives:	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters.	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes:	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately.	2 Hrs.
Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background:	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. 	2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. 	
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: 	2 Hrs. 2 Hrs.
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: Aim and Objectives: 	
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: Aim and Objectives: Aim: To Measure Gear tooth thickness using Gear tooth Vernier caliper 	
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: Aim and Objectives: Aim: To Measure Gear tooth thickness using Gear tooth Vernier caliper Objectives: 	
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: Overview of thread geometry, floating carriage micrometer. Experimentation: Use a floating carriage micrometer to perform measurements on sample threads. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: Aim and Objectives: Aim: To Measure Gear tooth thickness using Gear tooth Vernier caliper Objectives: Learn gear geometry. 	
 Aim and Objectives: Aim: To measure screw thread parameters using Floating Carriage Micrometer Objectives: To use a floating carriage micrometer for measuring screw thread parameters. Outcomes: Students will measure major, minor, and pitch diameters of threads accurately. Theoretical Background: 1. Overview of thread geometry, floating carriage micrometer. Experimentation: 1. Use a floating carriage micrometer to perform measurements on sample threads. 2. Record measurements and calculate thread parameters. Results and Discussions: Screw thread parameters were measured using floating carriage micrometer. Conclusion: Floating carriage micrometer enables precise thread measurement. Experiment No. 6: Aim and Objectives: Aim: To Measure Gear tooth thickness using Gear tooth Vernier caliper Objectives: 	

P. Tash in Debatics and Automation Engineering S.V.P. Tash (2024 COUI	
B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU)	(SE)
Students will be able to measure and analyze gear tooth geometry.	
Theoretical Background:	
1. Overview of gear tooth terminology, Gear tooth Vernier caliper.	
Experimentation:	
1. Measure gear tooth thickness using a gear tooth Vernier caliper.	
2.Record multiple measurements for accuracy. Results and Discussion:	
Present the measurements & calculate average.	
Conclusion : Gear tooth Vernier caliper enables precise gear tooth thickness	
measurement.	2 Hrs.
Experiment No. 7:	2 Hrs.
Aim and Objectives:	
Aim: To measure dimensions of given composite object using Coordinate	
Measuring Machine (CMM).	
Objectives:	
1. To familiarize oneself with the functioning and components of a CMM. 2.To measure the physical dimensions (length, width, height, and other	
geometrical features) of test specimens using the CMM.	
Outcomes:	
Students will be able to	
1. Understand the concept and working of CMM.	
2. Measure components using CMM.	
Theoretical Background:	
1. Overview of CMM, construction & working of CMM.	
Experimentation:	
1. Measure dimensions of given composite object using Coordinate Measuring	
Machine (CMM).	
2. Record multiple measurements for accuracy.	
Results and Discussion:	
Present the measurements & calculate average. calculated angles with	
Conclusion: Coordinate Measuring Machine (CMM) provided precise	
measurements of the test part's dimensions, including length, width, height, and	
other geometric features.	
Experiment No. 8:	
Aim and Objectives:	
Aim: To plot control charts for various manufacturing processes & thereby	
conducting the process capability analysis.	
Objectives:	
1. To learn about control charts (X-bar, R, P, NP) and their importance in quality	
control.	
2. To plot control charts to monitor the process over time.	
3. To evaluate the process capability using Cp and Cpk indices.	
5. To evaluate the process capability using Cp and Cpk indices.	

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)
4. To identify process variations and take corrective actions based on control chart
results and capability analysis.
Outcomes:
Students will be able to
1 Calculate and interpret control charts (X-bar, R, P, NP) and process capability indices
Theoretical Background:
1. Overview of Control charts & process capability analysis
Experimentation:
1.Plot the control chart and compare the observed data points with the control
limits.
2.Identify any points that fall outside the control limits or exhibit non-random
patterns. Investigate the causes of these variations.
Results and Discussion:
1. Analyze the plotted control charts.
2. Calculate Cp and Cpk to assess the process capability.
Conclusion: Using control charts and process capability analysis together allows
for proactive identification of process issues, leading to improvements in process
stability, product quality, and operational efficiency.
Report based on Industrial Visit
Textbooks:
1. K.J.Hume, "Engineering Metrology", Kalyani publication ISBN8170290015
2.K.W.B.Sharp, "Practical Engineering Metrology", Pitman Publication
3. F. M. Gryna, R. Chua & amp; J. Defco, "Jurans Quality Planning and Analysis for
Enterprise Quality", McGraw Hill series. ISBN0070618488

References:

1. R.K. Jain, "Engineering Metrology", Khanna Publication.

2. I.C.Gupta, "A Text book of Engineering Metrology", Dhanpat Rai and Sons.

3. Kaoru Ishikawa, "Guide to Quality Control", Asian Productivity Organisation, Series, Juran's Quality Handbook

Experiment wise Measurable Students Learning Outcomes:

- 1. Students will accurately measure linear dimensions and angles using precision instruments.
- 2. Students will interpret interference fringes to assess surface flatness and smoothness.
- 3. Students will analyze and measure component geometry using a profile projector.
- 4. Students will evaluate surface roughness parameters (Ra, Rz) to assess surface quality.
- 5. Students will measure major, minor, and pitch diameters of screw threads using a floating carriage micrometer.
- 6. Students will determine gear tooth thickness using a gear tooth Vernier caliper.
- 7. Students will measure complex object dimensions using a Coordinate Measuring Machine (CMM).
- 8. Students will analyze control charts and process capability indices (Cp, Cpk) for quality control.

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | **S Y B Tech (2024 COURSE) Course Code:** RA124PC302 **Course Title: Engineering Mathematics III Category: Programme Specific**

		Teaching Scheme			Evaluation Scheme			
т	т	D	Cr	Exam	Theory % Marks		rks	
L	I	ſ	Cr	Exam	Max Min for Pass		r Pass	
3	1	0	3	CCA	50	20	40	
39	0	0		ESE	50	20	.0	

Prerequisites:

Differential & Integral calculus, Differential equations of first order & first degree, Fourier series, Collection, classification and representation of data and Vector algebra.

Course Objective

1. To make the students familiarize with concepts and techniques in Ordinary & Partial Differential equations, Laplace-Transform, Statistical methods and Probability.

2. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines.

Course Outcomes: After successful completion of the course the student will be able to

	•	
CO1	SOLVE higher order linear differential equations using appropriate techniques for modelling and analysis of mass spring systems, free and forced damped and undamped systems	BT-3
CO2	APPLY Integral transform techniques such as Laplace transform to solve differential equations involved in vibration theory, heat transfer and related mechanical engineering applications.	BT-3
CO3	SOLVE Partial differential equations such as wave equation, one and two dimensional heat flow equations.	BT-3
	APPLY Statistical methods like correlation, regression as applicable to analyse and interpret experimental data related to energy management, power systems, testing and quality control	BT-3
CO5	Apply Probability theory as applicable to ANALYZE and interpret experimental data related to energy management, power systems, testing and quality control.	BT-4

	Syllabus						
Unit I	Differential Equation & Its Application	8 hrs					
methods, N	LDE of nth order with constant coefficients, Complementary Function, Particular Integral, Short methods, Method of variation of parameters, Cauchy's and Legendre's DE. Modelling of mass-spring systems, free and forced damped and undamped systems.						
Unit II	Integral Transforms	8 hrs					
Laplace Transform (LT): Definition of LT, Inverse LT, Properties & theorems, LT of standard functions,							
LT of some	special function. Applications of LT for solving Linear differential equationsz						

Unit III	Applications of Partial Differential Equations	8 hrs
	pts, modelling of Vibrating String, Solution of Wave equation, One and two ons, method of Separation of variables, use of Fourier series.	o dimensional Heat
Unit IV	Statistics	8 hrs
Kurtosis,	central tendency, Measures of dispersion, Coefficient of variation, Momen g: fitting of straight line, parabola and related curves, Correlation and Regre	
Unit V	Probability	7 hrs
Expectation test, t-distri		
Expectation test, t-distri Text Book	n, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution	
Expectation test, t-distri Text Book 1. Higher E 2. Higher E	n, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution s Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Engineering Mathematics by B. S. Grewal (Khanna Publication, Delh	othesis: Chi-Squar
Expectation test, t-distri Text Book 1. Higher E 2. Higher E Reference	n, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution s Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Engineering Mathematics by B. S. Grewal (Khanna Publication, Delh Books	othesis: Chi-Squar
Expectation test, t-distri Text Book 1. Higher E 2. Higher E Reference 3. Advance 4. Advance	n, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution s Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Engineering Mathematics by B. S. Grewal (Khanna Publication, Delh Books d Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.) d Engineering Mathematics by M. D. Greenberg (Pearson Education	othesis: Chi-Squar i
Expectation test, t-distri Text Book 1. Higher E 2. Higher E Reference 3. Advance 4. Advance 5. Advance 6. Thomas'	h, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution s Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Engineering Mathematics by B. S. Grewal (Khanna Publication, Delh Books ed Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.) ed Engineering Mathematics by M. D. Greenberg (Pearson Education ed Engineering Mathematics by Peter V. O'Neil (Thomson Learning) Calculus by George B. Thomas, (Addison-Wesley, Pearson)	othesis: Chi-Squar
Expectation test, t-distri Text Book 1. Higher E 2. Higher E Reference 3. Advance 4. Advance 5. Advance 6. Thomas'	n, Probability distributions: Binomial, Poisson, Normal, Test of Hypo bution s Engineering Mathematics by B. V. Ramana (Tata McGraw Hill) Engineering Mathematics by B. S. Grewal (Khanna Publication, Delh Books ed Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.) ed Engineering Mathematics by M. D. Greenberg (Pearson Education ed Engineering Mathematics by Peter V. O'Neil (Thomson Learning) Calculus by George B. Thomas, (Addison-Wesley, Pearson) Mathematics (Vol. I and II) by P.N. Wartikar and J.N.Wartikar Vidy.	othesis: Chi-Squar

CO-PO Mapping

3: High, 2: Moderate, 1: Low, 0: No Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	-	-	-	-	1	-	-	1
CO2	3	3	-	-	-	-	-	1	-	-	1
CO3	3	3	-	-	-	-	-	1	-	-	1
CO4	3	3	-	-	-	-	-	1	-	-	1
CO5	3	3	-	-	-	-	-	1	-	-	1

0 11 1 1 1 1

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Course Category	Program Specific	Course Code	RA124PC303
Course Title	Strength of Materials		

Prere	quisites:
Cours	se Objectives: (Min 3)
	lerstand the basic concepts and principles of strength of materials, including key nitions and theorems
	lyse how different materials behave under various types of loads, such as axial, torsional, and
bendir	g forces.
1	ply knowledge of stress-strain relationships and material properties to determine how
	ials will respond under different loading conditions.
4. Eva	duate the mechanical properties of materials and their failure mechanisms to
under	stand the limits and performance of different materials.
5. Cre	ate solutions for problems involving axial, torsional, and bending loads using
princi	ples of strength of materials
Cours	se Outcomes: After successful completion of the course the student will be able to
CO1	Demonstrate an understanding of the fundamental concepts and principles of strength of materials.
CO2	Analyze the behavior of materials subjected to various types of loads, including axial, torsional, and bending loads
CO3	Analyze the load transfer mechanisms in beams under various loading conditions
CO4	Apply basic equation of simple torsion in designing of shafts and helical spring
CO5	To analyse the type of materials and its suitability as per applications.
	Syllabus

Unit I	Simple Stresses & Strains: Elasticity and plasticity – Types of stresses & strains– Hooke's law– stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Elastic moduli & the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain energy – Resilience – Gradual, sudden, impact and shock loadings.	7 hrs
Unit II	Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads	8 hrs
Unit III	Theory of simple bending – Assumptions – Derivation of bending equation: $M/I = f/y = E/R$ Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I,T, sections. Shear Stresses: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T sections	8 hrs

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Te	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)					
Unit IV	Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts– Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.	8 hrs				
Unit V	An overview of robotics and design fundamentals, with a focus on the selection and use of building materials such as metals, synthetic materials, and composites. This includes a detailed study of the properties of steel used in construction, the characteristics of wrought aluminium alloys, and the mechanical properties of stainless steel. Additionally, the designation and structural examination of titanium alloys, along with techniques like case hardening of titanium and its alloys.	8 hrs				

References

Text Books:

1.Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2016

2. Jindal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 2009

3. Engineering mechanics, 5th edn by S. Timoshenko , D.H. Young, et al. | 1 July 2017

4. S. Ramamurtham, "Strength of material", Dhanpat Rai Publication

References Books:

 Egor. P.Popov "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2002.
 Ferdinand P. Been, Russell Johnson, J.r. and John J. Dewole, "Mechanics of Materials", Tata McGraw Hill Publishing 'co. Ltd., New Delhi, 2005.

3.subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2010.

4. Mikell Grover ., — Industrial Robotics^{II}, McGraw Hill, 2016.

5. Beer and Johnston, "Strength of materials", CBS Publication

Journal Papers:

Authors, Title of Paper, Name of Journal, Vol (issue), pp, Year, DOI

You Tube: https://www.youtube.com/watch?v=E2gGF1rburw

Website:

- 1. Strength of Materials web course by IIT Roorkee <u>https://nptel.ac.in/courses/112107146/</u>
- 2. Strength of Materials video course by IIT Kharagpur

https://nptel.ac.in/courses/105105108/

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- 3. .Strength of Materials video course by IIT Roorkee <u>https://nptel.ac.in/courses/112107147/18</u>
- 4. <u>http://www.nptelvideos.in/2012/11/strengthof-materials-prof.html</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- 1. Quiz (To assist in GATE Preparations)
- 2. Demonstrations in Lab
- 3. Virtual Lab Experiments

Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	
CCA	Department	U	Г1		UT2		25	20
		5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

Scheme for Examination

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	2									2	1	
CO2	3	2	3									2	2	
CO3	2	1	2									3	1	
CO4	3	2	3			3		3				1	2	
CO5	3	2	3			3		3				1	2	

3: High, 2: Moderate, 1: Low, 0: No Mapping

Cour	se Category Program Specific	Course	Code	RA124MDM301
Co	urse Title Robotics Engineering			
D. Y. PATIL COL OF ENCINEER AKURDI	D Y Patil College of E An Autonomous Institute from AY 2024-25,			
В	Tech in Robotics and Automation Engi	neering S Y B Tec	ch (2024	4 COURSE)
Fundam Basics o Underst	dge of basic physics (mechanics and dynamentals of mathematics (linear algebra, calcof programming (Python, C++, or MATLA anding of control systems and mechatronic	culus, differential equ (B)	uations)	
Course	Objectives: (Min 3)			
 2. To u 3. To u 4. To i 	orovide an introduction to the fundamental inderstand kinematics, dynamics, and cont levelop the ability to design, simulate, and ntroduce students to robot programming, s Outcomes: After successful completion o	rol strategies of robo analyze robotic syst ensing, and percepti	otic syst tems. ion.	
Course	After the completion of the course the			i's Cognitive
CO	able to	student snould be	level	Descriptor
CO1	Explain the basic principles, components of robots.	, and applications	3	Apply
CO2	Analyze the kinematics and dynamics of	robotic systems.	3	Apply
CO3	Design control strategies for various robo	otic systems.	3	Apply
CO4	Develop algorithms for robot motion plan navigation.	nning and	3	Apply
CO5	Implement robotic systems using sensors programming frameworks.	, actuators, and	3	Apply

Syllabus

Unit I	Introduction to Robotics	5 hrs
	Definition, History, and Evolution of Robotics, Robot configurations,	
	Robot components, Robot Degrees of freedom, Robot joints and	
	symbols, Robot coordinates, Robot reference frames, Resolution,	
	Accuracy and precision of robot, Work cell control, Applications:	
	Industrial, Medical, Military, and Service Robotics	
Unit II	Kinematics and Dynamics of Robots	6 hrs
	Forward and Inverse Kinematics, Homogeneous Transformation	
	Matrices, Workspace Analysis and Trajectory Planning, Joint Space and	
	Cartesian Space Representation, Lagrangian and Newton-Euler	
	Formulations, Dynamic Simulation and Model Development	

B Te	ech in Robotics and Automation Engineering S Y B Tech (2024 COUI	RSE)
	Transducers and sensors, Sensors in robotics, Principles and applications	
	of following type of sensors, proximity sensors and photo electric	
	sensors, Laser scanners, position sensors – Piezo electric sensors, LVDT	
	and Resolvers	
	Encoders: Absolute and Incremental – Optical Magnetic, Capacitive, Pneumatic Position sensors.	
	Range sensors: Range Finders, Laser Range Maters, Touch sensors,	
	force and torque sensors.	
Unit IV	Robot Control Systems	5 hrs
	Fundamentals of Control Systems in Robotics, PID Controllers and	
	Trajectory Tracking, Adaptive and Non-Linear Control, Motion	
	Control Architectures	
Unit V	Mobile and Autonomous Robots	5 hrs
	Localization and Mapping (SLAM), Path Planning Algorithms: A*,	
	Dijkstra, RRT, Obstacle Avoidance Techniques, Case Studies on	
	Autonomous Robots	

References

- "Introduction to Robotics: Mechanics and Control" by John J. Craig •
- "Modern Robotics: Mechanics, Planning, and Control" by Kevin M. Lynch and Frank C. Park .

Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	
CCA	Demontra ont	U	Г1		UT2		25	20
	Department	5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

Scheme for Examination

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

"Modern Robotics: Mechanics, Planning, and Control" by Kevin M. Lynch and Frank C. ParkCO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	-	2	-	-	-	-	-	-	1	-	1
CO2	3	3	2	2	1		-	-	-	-	-	1	1	1
CO3	3	3	3	2	3	1	-	-	-	-	-	1	1	1

	B Tec	h in R	obotic	s and	Autom	nation	Engin	eering	SYI	3 Tech	(2024	COU	RSE)	
CO4	2	3	3	3	3	-	1	-	-		1	1	1	1
CO5	3	2	3	3	3	1	-	-	-	2	1	1	1	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

В	Tech	in Ro	botics	s and A	Auton	ation	Engir	neerin	g S Y	Y B Te	ech (2	2024 (COI	URSE	<u>(</u>)
Fitle of							U		0		L	Т	F		credit
Course	e Cod	e: Op	en Ele	ctive 1	l (RA12	24 0 E3	01)				3	1	-	4	
					Tea	ching S	Schem	e			Eval	uatior	n Scl	neme	
т		7	-	Т		0		Б			The	ory %	6 Ma	arks	
L		Τ		P		C	r	Exa	m	Max		M	in fo	or Pas	s
3		1		0)	3		CC	ĽA	50		20			
39		0		0	1	-		ES		50		20		_	40
Course		0		-		ge of M	Ianufa				and I		ial S	Scienc	e.
Course	Desci	ription	:												
This co	urse p	provide	es a co	mpreh	ensive	introc	luction	n to Ad	lditive	Manu	ifactu	iring (AM	I), cov	vering
its prin	ciples	s, proc	esses,	mater	ials, ap	oplicat	ions, a	and fu	ture ti	ends.	Stude	ents v	vill	learn	about
the des															
various					1		,	1	5			1			
			0.0												
Course	e Obi	ectives	5:												
1. Unde				nental	concer	ots and	l proce	esses in	n addi	tive m	anufa	acturi	ng.		
2. Exp					-		-						-	nufac	turing
technol									~ F						0
3. Anal	0		AM te	echnia	ues an	d their	appli	cation	s acro	ss indr	istrie	S.			
4. Exan															
5. Inves					0							0	urin	σ	
Course	-					leiging	<u>appn</u>	cation	15 01 u		/ 11101	iuiuci	um	5.	
COULSC	1	er the			of the	ooure	tha s	tudon	t chai	uld bo	R1	oom's	Co	onitiv	P
CO	able		compi	enon	of the	course	e the s	tuuen	ι 51101	nu be	lev			-	
CO1			h a h a c			م ام مر		an of a						riptor	
CO1		orate f		sic prir	iciples	and p	rocess	es of a	additiv	/e	4	1	lab	orate	
~ ~ ~		ufactu	<u> </u>										~ 1		
CO2		sify ar	nd com	pare c	lifferei	nt AM	techn	iques a	and		3	(las	sificat	ion
		erials.													
CO3	App	ly AM	l desig	n prino	ciples	to deve	elop oj	ptimiz	ed par	rt	3	A	Appl	y	
		netries													
CO4	Eval	luate th	ne role	of qua	ality co	ontrol	and sta	andard	ls in A	М	4	I	Eval	uate	
	1	esses.													
CO5	Ana	lyze th	e pote	ntial a	pplica	tions a	nd adv	vancer	nents	in	4	A	Anal	yze	
		tive m													
CO-PC											•				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO		SO 1	PSO 02	PSO 03
CO1	3	-	2	-	-	-	-	-	-	-	-	-	1	3	1
CO2	-	2	-	2	-	-	3	2		3		-	-	2	
CO3	3	2	-	-	-	-	-	-	-	-	2	2	-	-	2
CO4	-	-	-	-	-	-	-	-	-	-		-	2	2	-
CO4	-	-	3	2	-	-	-	2	2	-		2	2		3
CO5	3	2	-	-	2	2	-	3		-	-	-	-	-	-

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Assessments:

Teacher Assessment:

Two components of Continuous Comprehensive Assessment (CCA) and one End Semester Examination (ESE) having 50% and 50% weights respectively.

Assessment	Marks
CCA	10
CCA	30
CCA	10
ESE	50

CCA 1 and CCA 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Introduction to Additive Manufacturing	08 Hrs.
Overview of Additive Manufacturing, historical development, and applications. Key	
differences between traditional manufacturing and AM. Basic principles and	
classifications of AM processes (e.g., SLA, FDM, SLS).	
Unit 2: AM Processes and Technologies	09 Hrs.
Detailed study of various AM techniques: Stereolithography (SLA), Fused	
Deposition Modeling (FDM), Selective Laser Sintering (SLS), Electron Beam	
Melting (EBM), Direct Metal Laser Sintering (DMLS). Process parameters,	
advantages, limitations, and applications of each technique. Comparisons among	
AM processes.	
Unit 3: Materials for Additive Manufacturing	08 Hrs.
Types of materials used in AM: polymers, metals, ceramics, and composites.	
Material properties, selection criteria, and process compatibility. Challenges in	
material processing and developments in multi-material AM.	
Unit 4: Design for Additive Manufacturing (DfAM)	08 Hrs.
Design principles specific to AM: part consolidation, topology optimization, and	
support structures. Guidelines for effective design. Case studies on optimized	
designs using AM.	
Unit 5: Quality Control, Standards, and Future Trends	08 Hrs.
Quality control and testing methods in AM: dimensional accuracy, surface finish,	
and mechanical properties. Standards and certifications (ISO, ASTM) relevant to	
AM. Emerging applications, environmental impact, and future developments in	
additive manufacturing.	
Textbooks:	
1. G. K. Lal and Amitabha Ghosh "Additive Manufacturing and 3D Printing Techno	U .
2. Rupinder Singh "3D Printing and Additive Manufacturing: Technologies and App	
3.Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing Technol-	ogies: 3D
Printing, Rapid Prototyping, and Direct Digital Manufacturing," Springer.	
4 Andreas Gebhardt "Understanding Additive Manufacturing" Hanser Publication	2

4. Andreas Gebhardt, "Understanding Additive Manufacturing," Hanser Publications..

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

References:

1. Ramesh Kumar and Vinod Kumar Jain "Advances in Additive Manufacturing and Tooling" 2. K. V. Sudhakar and Shubham Sharma, "3D Printing and Additive Manufacturing of Electronics: Principles and Applications"

3.Frank B. Prinz, "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography," CRC Press.

2. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles and Applications," World Scientific Publishing Company.

Unit wise Measurable Students Learning Outcomes:

1. Explain the fundamentals and applications of additive manufacturing.

2. Differentiate between various AM technologies and their process parameters.

3. Select appropriate materials for specific AM processes.

4. Utilize DfAM principles for creating optimized geometries.

5. Assess AM quality control standards and explore advancements in the field.

	f the C			-							L	Т	P	Cree					
Cours	e Code	: Oper	n Elec	tive 1	(RA12	40E30	1)				3	1	-	4					
Course	Pre-R	equisit	e: Basi	ic know	wledge	e of Er	nginee	ring I	Drawi	ng, C	AD so	oftwar	e.						
	Descr	-			0	-		-					0						
	sing, co																		
	urse that																		
-	ts inclu		uality	contro	l, proc	ess op	timiza	tion,	and m	ateria	al sele	ction	will be	cover					
y the	student	s.																	
ours	e Obje	otivos																	
	ntroduc			AM	proced	ures a	nd 3D	mode	eling t	ools									
	give stu										ind pa	rt desi	igns.						
	pread a													ies					
	e Lear												U						
											1-4		~ •						
CO			omple	tion of	f the c	ourse	the st	uden	t shoi	ıld			Cogniti						
	be ab	ole to									leve		Descr	<u> </u>					
CO1	Apply CAD tools to create and optimize designs for AM.											AM. Apply Procedural Knowledge							
~~	Analyze STL files and resolve common file issues for Procedural Procedural																		
CO2			D print								Ana	lyze	Knowl						
CO3	-	-	ocess p		ers to i	mprov	e part q	luality	and		Eval	luate	Critica						
05	minin	nize ma	aterial v	vaste.							Lva	luate	Thinki	<u> </u>					
CO4	Prepa	re and	process	3D m	odels u	sing sl	icing s	oftwa	re.		App	ly	Procee						
			•			0	Ũ					-	Knowl Experi						
CO5	Perfor	rm qua	lity cor	trol tes	sts on 3	BD-prir	nted par	rts.			Eval		Design						
GO (Demo	nstrate	the ab	ilitv to	work v	with en	nerging	appli	cation	s in			Proced						
CO6	AM.						00	, . .			App	ly	Knowl						
CO-P(D-PSO	Mapp	ping:																
CO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO					
<u></u>	1	2	3	4	5	6	7	8	9	10	11	01	02	03					
CO1 CO2	3	2	2	-	3	1 -	-	1	$\frac{2}{2}$	32	1	-	2	- 1					
CO2 CO3	3	2	-	2	-	1	2	-	2	2	1	1	-	-					
CO4	3	-	-	2	-	1	-	-	-	3	1	1 1							
CO5	3	2	3	3	3	-	2	2	2	3	-	-	-	3					
	2	2	3	-	-	2	3	1	-	-	2 3								

Assessments:

Teacher Assessment:

B Tech in Robotics and Automation Engineer	ring S Y B Tech (2024 COU	RSE)
One component of Continuous Comprehensive Asses	sment (CCA) and one End Sem	lester
Examination (ESE) having 50%, and 50% weights re	spectively.	
Assessment Mark	IS In the second s	
CCA 50		
ESE 50		
CCA are based on practical performed/ Quiz/ Mini-P	roject assigned/ Presentation/ G	roup
Discussion/ Internal oral etc.		-
ESE: Assessment is based on oral examination		
Course Contents:		
Experiment No. 1: Introduction to solid modelling and	Working with sketch mode	01 Hrs.
Aim and Objectives:		
• Aim: To understand the basics of solid model	ing and sketch creation in	
CAD software.	_	
Objectives:		
• Learn to use sketch tools to create basi	c 2D profiles.	
• Explore constraints and dimensions to	-	
Outcomes:		
• Proficiency in using sketch mode tools.		
• Ability to create fully constrained sketches for	r solid modeling.	
Theoretical Background:	C	
Solid modeling is the foundation of 3D CAD design.	Sketch mode allows the	
creation of 2D profiles that serve as the base for 3D f		
revolutions. Proper constraints ensure accuracy and f		
Experimentation:		
1. Open CAD software		
 Select a plane and enter sketch mode. 		
3. Use tools (e.g., line, rectangle, circle) to create	e a simple 2D profile.	
 Apply geometric constraints and dimensions t 		
Results and Discussions:		
• Sketch created and fully constrained.		
 Observed how constraints influence the sketch 	n geometry	
 Discussed the importance of precision in creat 		
Conclusion:	shetenes.	
A clear understanding of sketch mode was achieved,	highlighting its importance as	
a foundation for solid modeling.	inging its importance us	
Experiment No. 2: Working with creating features (Ex	trude & Revolve) Working with	01 Hrs.
advanced modeling tools (Sweep, Blend & Swept Blend)	unde & Revolve) working with	01 111 5.
Aim and Objectives:		
 Aim: To learn the creation of 3D features using ba 	asic and advanced modeling	
tools.	and advanced modering	
Objectives:		
• Understand the use of extrude and revolve	e for simple 3D geometry.	
• Explore advanced tools like sweep, blend	·	
Outcomes:	-	

B Tash in Debating and Automation Engineering S V D Tash (2024 COUT	DSE
B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU)	KSE)
 Proficiency in creating basic and complex 3D features. Enhanced modeling shills for real world complications. 	
• Enhanced modeling skills for real-world applications.	
Theoretical Background:	
Features like extrude and revolve are used to create basic 3D shapes, while	
advanced tools like sweep and blend enable the design of complex geometries by	
following a path or blending profiles.	
Experimentation:	
1. Create a sketch and use the Extrude and Revolve features.	
2. Design a path and use the Sweep feature to create a model.	
3. Use Blend to transition between two profiles and Swept Blend for varying	
transitions.	
Results and Discussions:	
 Successfully created 3D models using basic and advanced tools. 	
 Observed the differences in outcomes between basic and advanced features. 	
 Discussed the applicability of advanced tools in industrial designs. 	
Conclusion:	
The experiment demonstrated the versatility of modeling tools in creating complex	
geometries efficiently.	
	01 Hrs.
Experiment No. 3: Assembly modeling using appropriate assembly constrains	01 mrs.
Aim and Objectives:	
• Aim: To assemble individual parts into a complete assembly using constraints.	
Objectives:	
• Understand assembly constraints like mate, align, and tangent.	
• Create a functional assembly from pre-designed parts.	
Outcomes:	
• Ability to assemble parts accurately using constraints.	
• Understanding of the role of constraints in functional assemblies.	
Theoretical Background:	
Assembly modeling involves combining multiple parts into a single assembly	
using constraints to define their relative positions. This process ensures proper	
functionality and alignment of components.	
Experimentation:	
1. Import pre-designed parts into the assembly workspace.	
2. Apply constraints like Mate, Align, and Tangent to position parts.	
3. Verify the functionality and alignment of the assembly.	
Results and Discussions:	
• Successfully assembled parts into a cohesive model.	
• Observed the impact of constraints on part positioning.	
• Discussed potential issues in assemblies and their solutions.	
Conclusion:	
Assembly modeling is crucial for ensuring that parts work together as intended in a	
real-world application	
Experiment No. 4: Working on STL file problems using suitable Software, Working on	01 Hrs.
Online Repositories/open source software: Thingiverse and GrabCAD	01 111 5.
Aim and Objectives:	
Ann and Objectives:	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE	Z)
Aim: To work with STL files and explore open-source repositories like	
Thingiverse and GrabCAD.	
• Objectives:	
• Identify and fix common issues in STL files.	
• Download and modify files from online repositories.	
Outcomes:	
Ability to edit and repair STL files.	
• Familiarity with open-source resources for 3D printing.	
Theoretical Background:	
STL files describe the surface geometry of 3D models and are widely used in 3D	
printing. Errors like non-manifold edges and holes must be repaired for successful	
printing. Online repositories provide a vast library of 3D models.	
Experimentation:	
1. Import a faulty STL file into software like MeshLab or Netfabb .	
2. Repair issues like non-manifold edges and holes.	
3. Download a file from Thingiverse or GrabCAD and modify it in CAD software.	
Results and Discussions:	
• Successfully repaired STL files and modified downloaded models.	
• Discussed common STL file issues and their fixes.	
Conclusion:	
Understanding STL files and open-source repositories is essential for efficient 3D	
printing workflows.	
	Hrs.
CURA Software, Build-time calculation, amount of model and support material	
consumption using CURA Software.	
Aim and Objectives:	
• Aim: To prepare a 3D model for printing using CURA software.	
Objectives:	
• Optimize part orientation and add supports.	
• Generate tool paths and calculate build time and material usage.	
Outcomes:	
Proficiency in using CURA for part preparation.	
• Understanding of the impact of orientation and supports on printing.	
Theoretical Background:	
CURA is an open-source slicing software used for preparing models for 3D	
printing. Proper orientation minimizes supports and improves print quality, while	
tool path generation calculates build time and material usage.	
Experimentation:	
1. Import a 3D model into CURA.	
2. Experiment with different orientations and observe the impact on support	
structures.	
3. Generate tool paths and calculate build time and material consumption.	
Results and Discussions:	
• Optimized part orientation reduced support material usage by 20%.	
• Tool paths provided accurate estimates for build time and material consumption.	
Conclusion:	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 CO Efficient part preparation in CURA enhances printing efficiency and reduces	
material waste.	
Experiment No. 6: Model printing using 3D Printer	01 Hrs .
Aim and Objectives:	
• Aim: To print a 3D model using an FDM 3D printer.	
• Objectives:	
• Set up and calibrate the 3D printer.	
• Print a model and analyze the output.	
Outcomes:	
• Hands-on experience with 3D printing.	
• Understanding of printer settings and calibration.	
Theoretical Background:	
3D printing involves layer-by-layer deposition of material to create a physical	
object. Calibration ensures precision and quality in printed parts.	
Experimentation:	
 Calibrate the 3D printer (e.g., bed leveling, nozzle temperature). Load the sliced model from CURA. 	
 2. Load the sheed model from COKA. 3. Print the model and remove it from the print bed. 	
4. Inspect the printed part for quality.	
Results and Discussions:	
• Printed part matched the CAD model with minimal deviations.	
• Discussed issues like warping and solutions for improving print quality.	
Conclusion:	
3D printing provides a direct way to convert digital models into physical	
prototypes, highlighting the importance of calibration and preparation.	
Textbooks:	
1. "Additive Manufacturing Technologies" by Ian Gibson, David W. Rosen,	Brent
Stucker	
2. "Rapid Prototyping: Principles and Applications" by Chua Chee Kai and L	eong Kah
Fai	
3. "Introduction to 3D Printing" by B. K. Ghosh	
4. "3D Printing and Additive Manufacturing: Principles and Applications" by	Chee Kai
Chua and Kah Fai Leong	
5. "Advanced Modeling Techniques in CAD/CAM" by Kunwoo Lee	
References:	
1. "Additive Manufacturing: Materials, Processes, Quantifications and Appli	cations" by
M. K. S. Prakash	
M. K. S. Prakash2. "Fundamentals of Additive Manufacturing" by M. C. Gupta	
 M. K. S. Prakash 2. "Fundamentals of Additive Manufacturing" by M. C. Gupta 3. "Rapid Prototyping and Manufacturing" by Paul F. Jacobs 	
 M. K. S. Prakash 2. "Fundamentals of Additive Manufacturing" by M. C. Gupta 3. "Rapid Prototyping and Manufacturing" by Paul F. Jacobs 4. "3D Printing and Additive Manufacturing in Industry" by S. S. Rao 	
 M. K. S. Prakash 2. "Fundamentals of Additive Manufacturing" by M. C. Gupta 3. "Rapid Prototyping and Manufacturing" by Paul F. Jacobs 4. "3D Printing and Additive Manufacturing in Industry" by S. S. Rao 5. "Engineering Drawing and CAD Tools" by S. K. Sinha 	
 M. K. S. Prakash 2. "Fundamentals of Additive Manufacturing" by M. C. Gupta 3. "Rapid Prototyping and Manufacturing" by Paul F. Jacobs 4. "3D Printing and Additive Manufacturing in Industry" by S. S. Rao 	

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- 2 Create basic 3D features using Extrude and Revolve tools.
- 3 Assemble multiple parts into a cohesive model using constraints like Mate, Align, and Tangent.
- 4 Explore and utilize open-source repositories like Thingiverse and GrabCAD.
- 5 Optimize part orientation and support structures for efficient 3D printing.
- 6 Inspect printed parts for quality and address common printing issues like warping.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) Course Title: Entrepreneurship/ Economics and Management 1 Course Code: RA124EEM301

Prerequisites:
Course Objectives:
• To introduce the fundamental principles of entrepreneurship, economics, and management in the context of Robotics, and Automation Engineering.
• To develop an understanding of economic decision-making, financial management, and business planning for technology-driven start-ups.
• To enable students to apply management principles for optimizing production automation, and industrial processes.
Course Outcomes: After successful completion of the course the student will be able to
CO1 Understand the fundamentals of entrepreneurship, economic principles, and business management relevant to engineering.
CO2 Analyze financial, managerial, and economic factors affecting technology startups and automation-based industries.
CO3 Apply management and economic strategies to enhance productivity and efficiency in robotics and automation businesses.
Syllabus
Unit IFundamentals of Entrepreneurship and Innovation9 hrs
Introduction to Entrepreneurship: Characteristics, types, and importance in automation &
robotics.
Business Idea Generation & Innovation: Idea incubation, technology-driven startups, case
studies of robotics startups.
Legal & Ethical Aspects: Intellectual property rights (IPR), patents, trademarks, business ethics.
Industry 4.0 & Entrepreneurship: Emerging trends in automation and AI-driven businesses.

Unit II Engineering Economics & Financial Management

Engineering Economics Basics: Demand and supply, cost analysis, breakeven analysis, risk assessment.

9 hrs

Financial Planning & Funding: Venture capital, angel investors, crowdfunding, government schemes for tech startups.

Project Feasibility & Cost Estimation: ROI calculations, financial forecasting, automation cost-benefit analysis.

Economic Policies & Global Impact: Trade policies, economic trends affecting robotics industries.

Unit III	Management Principles & Industrial Automation	8 hrs						
Principles of Management: Leadership, strategic planning, organizational structures in automation								
industries.								
Operations & automation.	c Supply Chain Management: Lean manufacturing, Six Sigma, Agile method	ologies in						
Marketing & analysis.	Business Strategies: Market research, digital marketing for robotic products, co	ompetitive						

D Y Patil College of Engineering, Akurdi, Pune

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Sustainability & Corporate Social Responsibility (CSR): Green automation, environmental impact of robotics.

Reference Books

- 1. Peter F. Drucker, "Innovation and Entrepreneurship," Harper Business.
- 2. B.J. Harrison, "Engineering Economy," Pearson.
- 3. Philip Kotler, "Marketing Management," Pearson Education.
- 4. Charles Fine, "Clockspeed: Winning Industry Control in the Age of Temporary Advantage," Basic Books.
- 5. Michael E. Porter, "Competitive Strategy," Free Press.

Scheme for Examination

Component	Level	Unit	Unit	Unit III	Total	Pass
		l	11			
	Faculty	8	8	9	25	
CCA	Dementary	UT	1	UT2	25	20
	Department	8	9	8	23	
ESE	Institute	17	17	18	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	2	-	2	2	-	-	2	-	-
CO2	3	-	2	-	2	-	2	3	-	-	2	-	1	2
CO3	2	2	-	-	2	-	-	-	3	2	-	1	-	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

I	B Tech	in Roboti	cs and Auto	mation Engine	ering S	Y B Tec	h (2024 C	OURS	E)			
	rse Cat			ation Course 1		Course		EC1				
C	ourse T	litle	Sustainable	Development -								
		Teachi	ng Scheme			Evalu	ation Sch	eme				
						Theor	y Marks		ctical arks			
L	,	Т	Р	Cr	Exam	Max	Min Marks for Pass	Max	Min for Pass			
2		0	0	2								
		Tota	l Hours		CCA	100	40	-	-			
26	5	0	0	Total hrs: 26								
None	equisites ects Incl											
Susta	inable I	Developme	ent Goals (SI	DG - Basic) 2 un	its							
Envir	ronment	Studies		2 ur	nits							
Intell	ectual P	Property Ri	ghts (IPR)	1 ur	nit							
Cours	se Obje	ctives: (M	lin 3)									
			-	– Introduce studing global and loc		-	rtance of si	ıstainab	ole			
-			nnections – A	Analyze how va tively.	rious SD	Gs are li	nked and t	he				
		Environn le develop		s – Examine env	vironmen	tal challe	enges and t	heir im	pact			
		onmental al sustaina		nalyze national	and glob	al policie	es related t	0				
			perty Right ble in innova	ts (IPR) – Unde tion.	rstand th	e basics	of patents,	copyrig	ghts,			
Cours	se Outc	omes: Aft	er successfu	l completion of	the cours	e the stu	dent will b	e able t	0			
CO1	DEFI	NE the key	y concepts of	f SDGs and LIS'	T the 17	SDGs w	ith their sig	gnifican	ce.			
CO2	EXPL impact		connections	between differen	nt SDGs	and anal	yze their h	olistic				
CO3		CRIBE key opment.	environmer	ntal challenges a	nd their i	mplicati	ons for sus	tainable	e			

]	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)										
	DISCUSS major environmental policies and governance frameworks.										
CO5	UNDERSTAND fundamental concepts of Intellectual Property Rights (IPR) and their										
000	applications.										

Syllabus

Unit I	Introduction to SDGs & Sustainability	6 hrs					
	Evolution from MDGs to SDGs, significance in the UN 2030 Agenda, India's contributions, real-world applications.						
Unit II	SDG Targets & Interconnections	6 hrs					
	Understanding SDG indicators, interlinkages, roles of stakeholders, case studies, impact assessment frameworks.						
Unit III	Environmental Challenges & Sustainability						
	Key environmental issues like climate change, biodiversity loss, pollution; impact on health and society, mitigation strategies.						
Unit IV	Environmental Policies & Governance	5 hrs					
	National and global environmental policies, role of regulatory bodies, sustainability standards, case studies of successful interventions.						
Unit V	Introduction to Intellectual Property Rights (IPR)						
	Basics of patents, copyrights, trademarks, importance in innovation and sustainability, protection of intellectual property in academia and industry.						

Scheme for Examination

Component	Parameters	Marks	Total	Pass
CCA	Viva Voce for assessment of Understanding	20		
	Involvement, Participation, and Engagement	10	50	20
	Quality of Submission of Report	10		
	Attendance	10		
End	Performance (Internal)	25 50		20
Evaluation	Oral Examination (Internal)	25		20

CCA: Continuous Comprehensive Assessment (CCA)

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO5	3	3	3	3	-	-	-	-	-	-	-	-	3	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

	Tech in Robotics and Automation Engineering S Y B T	ech (2)	<u>024 (</u> T		<u>SE)</u> Credit				
	f the Course: Basic Robotics Workshop (FAB Lab)	L	I	P 4					
	e Code: RA124FEP301	-	-	•	•				
	e Pre-Requisite: Basic knowledge of electronics, programm	ing, an	d me	chanica	al				
concep									
	e Description: This workshop introduces students to the fundation								
	g topics such as robotic components, basic electronics, prog								
	Hands-on practical include assembling robotic systems, cod		croco	ontrolle	ers,				
workin	g with sensors, and using 3D printing for custom robotic par	ts.							
Cours	e Objectives:								
1.	To provide an understanding of robotics principles and appl	ication	s.						
2.	To develop skills in assembling and programming basic rob	otic sys	stems	5.					
3.	To introduce students to 3D printing for custom robotic part	s.							
4.	To implement automation and sensor integration in robotic	projects	s.						
Course	e Learning Outcomes:								
		1							
CO	1								
	be able to	level		Descri					
C01	Identify and describe key components of a robotic system.	Under		Concep					
		and		Knowl	0				
CO2	Assemble and wire a simple robotic system.	Apply	7	Proced					
		11.2		Knowledge Procedural					
CO3	Program microcontrollers to control robotic movement.	Apply	7						
				Knowl	•				
	Utilize 3D printing for designing custom robotic components	Evalua	are	Experin Design					
CO4				Problem-					
				U					
CO4 CO5	Integrate sensors for autonomous robot functionality.	Analy	170	Problei	n-				
	Integrate sensors for autonomous robot functionality. Demonstrate the ability to work with emerging applications in	Analy Apply	/ze	U	m- g				

CO-PO-PSO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 01	PSO 02	PSO 03
CO1	3	2	2	1	3	1	-	1	2	3	1	-	2	-
CO2	2	-	2	-	3	-	2	1	2	2	-	-	-	1
CO3	3	2	-	2	-	1	2		3		1	1	-	-
CO4	3	-	-	2	-	1	-	-	-	3	1	-	2	-
CO5	3	2	3	3	3	-	2	2	2	3	-	-	-	3
CO6	2	2	3	-	-	2	3	1	-		2	-	-	3

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COUF	RSE)
Assessments:	/
Teacher Assessment:	
One component of Continuous Comprehensive Assessment (CCA) 100% weights	
Assessment Marks	
CCA 100	
Course Contents:	
Experiment No. 1: Introduction to Robotics & Basic Electronics	06 Hrs.
Aim and Objectives:	00 1115.
Aim: To understand the basic components of a robotic system and simple	
electronics used in robotics.	
Objectives:	
Identify motors, sensors, microcontrollers, and power sources.	
Learn basic circuit connections using a breadboard.	
Outcomes:	
• Ability to recognize key robotic components.	
• Hands-on experience with basic circuit assembly.	
Theoretical Background:	
Robots consist of mechanical structures, electronic components, and software	
control. Understanding motors, power sources, and microcontrollers is essential for	
building functional robots.	
Experimentation:	
Identify different robotic components.	
Wire a basic LED and motor circuit on a breadboard.	
Observe circuit functionality and troubleshoot errors.	
Results and Discussion:	
Successfully identified and tested basic robotic components.	
Conclusion:	
Understanding basic electronics is fundamental for robotics development.	
Experiment No. 2 : Assembly and Programming of a Simple Mobile Robot	06 Hrs.
Aim and Objectives:	
Aim: To assemble and program a basic wheeled robot.	
Objectives:	
Assemble a robot chassis with motors and wheels.	
Interface a microcontroller (e.g., Arduino) with motor drivers.	
Write and upload basic movement control code.	
Outcomes:	
Ability to assemble and test a mobile robot.	
Basic understanding of microcontroller programming.	
Theoretical Background:	
Robots require both hardware (motors, wheels, chassis) and software (code to	
control movement). Programming microcontrollers is essential for movement	
automation.	
Experimentation:	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	RSE)
Assemble a two-wheeled robot with motor drivers.	
Connect the robot to an Arduino/microcontroller.	
Write and upload a basic movement program.	
Results and Discussion:	
The robot successfully moved in predefined directions.	
Conclusion:	
Assembling and programming a robot is essential for understanding automation.	
Experiment No. 3: 3D Printing for Robotics	06 Hrs.
Aim and Objectives:	
Aim: To design and print a custom robotic component using 3D printing.	
Objectives:	
Learn basic 3D modeling using CAD software.	
Prepare and slice a model for 3D printing.	
Print a robotic part (e.g., wheel, gripper, bracket).	
Outcomes:	
Ability to design and fabricate a 3D-printed component.	
Understanding of material selection and printing parameters.	
Theoretical Background:	
3D printing allows custom robotic components to be manufactured efficiently.	
Proper design, slicing, and printing techniques ensure optimal results.	
Experimentation:	
Design a simple robotic component using CAD software.	
Slice the model using Cura or similar slicing software.	
Print the component using a 3D printer and inspect the output.	
Results and Discussion:	
Successfully printed a custom robotic component.	
Conclusion:	
3D printing is an essential tool for rapid prototyping in robotics.	
Experiment No. 4: Sensor Integration for Autonomous Robots	06 Hrs.
Aim and Objectives:	
Aim: To integrate sensors and automate robot responses.	
Objectives:	
Interface ultrasonic/IR sensors with a microcontroller.	
Write code for obstacle detection and avoidance.	
Test and evaluate autonomous movement.	
Outcomes:	
Ability to integrate and use sensors in robotic applications.	
Understanding of automation and sensor-based navigation.	
Theoretical Background:	
Autonomous robots rely on sensors for perception and decision-making.	
Ultrasonic and infrared sensors help in detecting objects and avoiding obstacles.	
Experimentation:	
Connect an ultrasonic sensor to an Arduino/microcontroller.	
Write a program for obstacle detection.	

I	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	RSE)						
Observ	ve the robot avoiding obstacles autonomously.							
Result	Results and Discussion:							
The ro	bot successfully detected and avoided obstacles.							
Concl	usion:							
Sensor	r integration is crucial for autonomous robotic functionality.							
Textb	ooks and Reference Books:							
1.	"Introduction to Robotics: Mechanics and Control" by John J. Craig							
2.	"Robotics, Vision and Control" by Peter Corke							
3.	"Arduino Robotics" by John-David Warren							
4.	4. "3D Printing for Dummies" by Richard Horne and Kalani Kirk Hausman							
5.	"Make: Getting Started with 3D Printing" by Liza Wallach Kloski & Nick Kloski							
-	iment wise Measurable Students Learning Outcomes:							
1.	Identify basic robotic components and build simple circuits.							
2.	Assemble and program a mobile robot for movement.							
3.	Design and fabricate a custom robotic part using 3D printing.							
4.	Integrate sensors for obstacle detection and automate robotic movements.							

Course Category	NC1	Course Code	NCMC1
Course Title	Design Thinking		

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Prerequisites: Basic engineering, problem-solving, communication, materials, human-centered design, business awareness.

Course Objectives: (Min 3)

To understand the principles of Design Thinking and its application in problem-solving.
 To develop skills in user research, ideation, prototyping, and testing for innovative solutions.

Course Outcomes: After successful completion of the course the student will be able to

CO1 Apply Design Thinking methodologies to analyze and solve real-world problems.

CO2 Conduct user research, generate insights, and develop creative solutions.

CO3 Develop and test prototypes using iterative refinement for effective implementation.

Syllabus

Unit I	Introduction to Design Thinking	4 hrs				
	Concept, importance, five stages of Design Thinking, case studies,					
	iterative nature, problem-solving approach, role of collaboration,					
	interdisciplinary teams.					
Unit II	User Research and Ideation	4 hrs				
	Empathy, user research techniques (interviews, observations, surveys),					
	data collection, analysis, problem statement formulation, brainstorming					
	techniques (SCAMPER, Mind Mapping, Reverse Thinking), idea					
	generation, converting insights into solutions.					
Unit III	Prototyping, Testing, and Implementation	4 hrs				
	Prototyping, tools, materials, user testing methodologies, feedback					
	analysis, iterative refinement, effective presentation, project					
	documentation.					

References

Textbooks:

1.Brown, T. (2009). Change by Design: How Design Thinking Creates New Alternatives for Business and Society. Harper Business.

2.Kelley, T., & Kelley, D. (2013). Creative Confidence: Unleashing the Creative Potential Within Us All. Crown Business.

Scheme for Examination

Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	
CCA	Donortmont	U	Г1		UT2		25	20 Pass
	Department	5	5	5	5	5	25	

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO-PSO Mapping

	B Tec	h in R	obotic	s and .	eering	S Y I	B Tech	a (2024	COU	RSE)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO2	PSO3
CO1	3	2	3	2	2	1	2	0	2	2	1	1	3	2
CO2	2	3	2	2	0	0	1	2	3	1	2	2	2	3
CO3	3	2	3	2	3	2	1	0	2	3	2	2	2	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Title of	the Course: Design Thinking (Pr.)	L	Т	Р	Credit					
Course	Code: NCMC1	1	0	2	-					
Course	Pre-Requisite: Basic engineering, problem-solving, communication	on, ma	aterial	s, hum	an-centered					
design,	business awareness.									
 Course Description: This course introduces students to the principles and methodologies of Design Thinking, enabling them to approach problem-solving creatively and innovatively. Through hands-on activities and real-world projects, students will learn how to empathize with users, define problems, ideate solutions, prototype, and test their ideas effectively. Course Objectives: Introduce students to the Design Thinking process and its importance in problem-solving. 										
	op empathy by understanding users' needs and challenges.		Ũ							
3. Apply	Design Thinking principles to real-world challenges and projects.									
Course	Learning Outcomes:	•								
CO	After the completion of the course the student should be	Bloc	om's (C <mark>ognit</mark>	ive					
	able to	leve	l	Desc	ription					
CO1	Understand the fundamental principles of Design Thinking	Leve	12	Unde	rstand					
CO2	Apply empathy techniques to user research	Leve	13	Appl	у					
CO3	Ideate creative solutions for complex problems	Leve	14	Analy	/ze					
CO4	Develop prototypes to visualize and test solutions	Leve	15	Evalu	late					
CO5	Evalu	late								
CO6	Present and document a Design Thinking project effectively	Leve	16	Creat	e					

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	3	0	2	3	1	0	0	1	3	2
CO2	0	2	2	3	0	2	0	1	2	2	1	0	2	3
CO3	2	2	1	0	2	2	3	1	2	3	1	1	2	3
CO4	2	3	1	2	3	2	0	2	2	0	2	0	2	1
CO5	2	0	2	0	0	0	3	1	0	3	1	2	3	1
CO6	3	2	0	2	2	3	2	0	0	3	2	0	2	2

Assessments:

Teacher Assessment:

One component of Continuous Comprehensive Assessment (CCA)

Assessment	Marks	
CCA	50	

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

NPTEL Course: Design Thinking - A Primer https://onlinecourses.nptel.ac.in/noc25_mg	18/preview
Course Contents:	
 Experiment No. 1: Introduction to Design Thinking Aim and Objectives: Understand the five stages of Design Thinking and their applications. Experimentation: Case studies and group discussions. 	2 Hrs.
Results and Discussions: Understanding the iterative nature of design. Conclusion: Importance of Design Thinking in problem-solving.	
Experiment No. 2: Empathy and User Research	2 Hrs.
Aim and Objectives: Learn user research techniques like interviews and observations.	
Outcomes: Develop an understanding of user needs.	
Experimentation: Conducting real-life interviews.	
Results and Discussions: Analyzing collected data.	
Conclusion: Importance of empathy in design.	
Experiment No. 3: Ideation and Brainstorming Aim and Objectives: Develop creative solutions using brainstorming techniques.	2 Hrs.
Outcomes: Generate multiple innovative ideas.	
Experimentation: Group brainstorming sessions.	
Results and Discussions: Evaluating feasibility of ideas.	
Conclusion: Selecting the best approach for prototyping.	
Experiment No. 4: Prototyping	2 Hrs.
Aim and Objectives: Convert ideas into tangible prototypes.	
Outcomes: Develop low-fidelity prototypes.	
Experimentation: Using basic materials to create models.	
Results and Discussions: Testing usability.	
Conclusion: Importance of rapid prototyping.	
Experiment No. 5: User Testing and Feedback	2 Hrs.
Aim and Objectives: Evaluate the effectiveness of prototypes.	
Outcomes: Gather user feedback for refinement.	
Experimentation: Testing prototypes with real users.	
Results and Discussions: Identifying improvement areas.	
Conclusion: Importance of iterative improvement.	
Experiment No. 6: Final Project Presentation	2 Hrs.
Aim and Objectives: Document and present the Design Thinking project.	
Theoretical Background: Importance of storytelling in design.	
Experimentation: Presenting findings to peers and faculty.	
Results and Discussions: Constructive feedback.	
Conclusion: Reflection on the design process.	

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

	Teaching	g Scheme			Evalua	tion S	chen	ne		
						Theory % Marks			ical % 1rks	
L	Т	Р	Cr	Exam		Max Min for Pass		Min for M		Min
					Max			Max	for Pass	
							-		r ass	
0		2						50	20	
	Total	Hours						50	20	
0		26	Total: 26				-			

Textbooks:

1.Brown, T. (2009). Change by Design: How Design Thinking Creates New Alternatives for Business and Society. Harper Business.

2.Kelley, T., & Kelley, D. (2013). Creative Confidence: Unleashing the Creative Potential Within Us All. Crown Business.

References:

1.Liedtka, J., & Ogilvie, T. (2011). Designing for Growth: A Design Thinking Toolkit for Managers.

Columbia University Press.

2.Plattner, H., Meinel, C., & Leifer, L. (2010). Design Thinking: Understand, Improve, Apply. Springer.

Experiment wise Measurable students Learning Outcomes:

Experiment 1: Understand the concept and process of Design Thinking.

Experiment 2: Apply empathy techniques in user research.

Experiment 3: Use brainstorming methods for creative problem-solving.

Experiment 4: Develop prototypes to visualize solutions.

Experiment 5: Conduct user testing and refine designs.

Experiment 6: Effectively document and present design projects.

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) Course Code: NCMC2, Course Title: Professional and Technical Communication

Category: Non Credit Mandatory Course

Prere	quisites: Basic English Grammar Skills
	se Objective: Purposes of Course are:
	This course is designed to equip students with essential professional and technical
	communication skills necessary for success in the modern workplace.
	Emphasizing both written and verbal communication
3.	The course covers a wide range of topics, including effective written communication,
	active listening and public speaking.
4.	Develop strong logical reasoning aptitude & problem solving to clear company
	selection tests
Cours	se Outcomes: After Successful completion of course units, students will
CO1	Analyse and evaluate spoken information critically for understanding the context and credibility of the source.
CO2	Demonstrate effective interpersonal communication skills for harmonious and productive interactions.
CO3	Articulate strategies for clear and coherent writing skills for personal & professional communication needs.
CO4	Develop skills for effective and authentic non-verbal communication to ace the professional communication needs.
CO5	Solve complex logical reasoning aptitude problems efficiently, improving selection test performance.

Syllabus

Unit I	Development of Listening and Speaking Skills	04 Hrs.						
Listening b Building v	Introduction to Listening skills, Barriers to Listening skills, active Listening techniques Listening for main ideas and details, Note taking strategies. Introduction to Speaking skills Building vocabulary and fluency, Conversational Skills, Public speaking fundamentals. Speed and Fluency, Removing MTI.							
Unit II	Development of Writing and Reading Skills	03 Hrs.						
Introductio	on to Effective Written Communication, fundamentals of grammar and pur	ictuation,						
Paragraph	Structure, Essay writing, Report writing, Formal letter writing. Impo-	rtance of						
Reading, C	Reading, Comprehension and solving case studies, Synthesis writing							
Unit III	Fundamentals of Technical Communication	03 Hrs.						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

What is communication? Importance of communication, Communication Types – Verbal, Nonverbal, Why is non-verbal communication important? Making eye contact (or lack thereof), Shaking hands, -Crossing or uncrossing legs, Folding or unfolding arms, Fidgeting, Eye contact, Smiling or frowning, Communication styles

Unit IV Business Communication

Business communication theory, Email Etiquette, Digital Communication, Presentation Skills, Ethics in Business Communication, Kinesics and Pitch modulation

Unit VQuantitative Aptitude1 Descen & Time and Work

1. Recap & Time and Work

Unit VI Reasoning Ability

- 1. Analytical Reasoning I
- 2. Clock & Calendars
- 3. Coding and Decoding & Odd Man Out
- 4. Data Interpretation Advanced
- 5. Cubes & Dices

Unit VII Career Skills

1. Networking Skills

- 2. Linked In Profile Building & Internship Outreach
- **3.** ATS Resume

Reference Books

- Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson),2011, ISBN - 8131799905, 9788131799901
- 2. Communication Skills for Technical Students by T.M. Farhathullah (Orient Longman)2002, ISBN 9788125022473
- 3. Written Communication in English by Saran Freeman (Orient Longman) 1977, 8125004262
- 4. Essential English Grammar (Elementary & Intermediate) Raymond Murphy (CUP), 1990, ISBN 10-8175960299
- 5. Communication for Business: A Practical Approach by Shirley Tailor (Longman),2005, ISBN 9780273687658
- 6. Developing Communication Skills by Krishna Mohan & Meera Banerji (Macmillan),2009, ISBN 9780230638433

08 Hrs.

02 Hrs.

03 Hrs.

03 Hrs.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- 7. Business Correspondence and Report Writing, R. C. Sharma & Krishna Mohan (Tata McGraw Hill,2017, ISBN 9789390113002
- 8. Technical communication: Principles and practice, Raman, Minakshi, and Sangita Sharma. 3rd ed. Oxford University Press, 2015, ISBN 978-0199457496
- 9. <u>https://ielts.org</u>
- 10. NPTEL Course-Business English Communication IIT Madras Link <u>https://youtu.be/GwF4ypDSr-A</u>
- 11 NPTEL Course- Introduction to Effective Communication Link https://archive.nptel.ac.in/courses/109/104/109104030/

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | **S** Y **B** Tech (2024 COURSE)

Course Title: Industrial Electronics and Electrical Technology

Course Code: RA124PC401 Category: Program Specific

		Tea	aching Schem	ie	EvaluationScheme				
т	т	Р	Cr	Exam	Theory%Marks				
L	1	ſ	Cr	Exam	Ma Min		n forPass		
					X				
3	0	3	3	CCA	50	20	40		
39	0	0		ESE	50	20	10		

Prerequisites: Basic Electrical Engineering, Basic Electronics Engineering

Course Objective

1. Understand the Fundamentals of Microprocessors and Microcontrollers.

- 2. Introduce Arduino IDE for Embedded System Development
- 3. To understand selection of machines for specific applications.

4. To understand the construction, principle of operation of transformers, DC Machine & Induction Machine.

5. To test & analyse the performance of the machine.

	se Outcomes : After successful completion of the course the nt will be able to	Bloom	s Cognitive
stude	it will be able to	level	Descriptor
CO1	Understanding Microprocessor and Microcontroller	BL-2	Explain ideas or
	Architecture.		concepts
CO2	Introduction to Arduino IDE, Program Arduino IDE &	BL- 3	Execute or use
	Interfacing sensors with Arduino IDE		concepts in
			practical situations
CO3	Test and evaluate performance of DC machines	BL- 4	Differentiate,
			organize, and
			attribute
			information
CO4	Explain the construction, operation, types and applications of	BL - 2	Describe the
	induction motors		functioning of
			processes
CO5	Identify special purpose motor and its speed control method	BL- 5	Justify decisions or
	for given industrial application		solutions

	Syllabus	
UnitI	Introduction to Microprocessors and Microcontrillers	7hrs
,Introduc program descriptio	ion to microprocessors Architecture CPU, address bus, data bus and control bus, Interr tion and history of microcontrollers. Features of 8051 microcontroller. Block diagram of status word (PSW), accumulator, and program counter. Memory organization, Pin out of on of pins, special function registers (SFRs), I/O port organization, interrupts, role of en- sensors and actuators, data acquisition systems.	of 8051- liagram-

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B	Fech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)
UnitII	Atmega328P and Arduino: Architecture, Programming, and Peripherals	7hrs

Open source embedded platforms, Atmega328P- features, architecture, portstructure, introduction to Arduino IDE-features, IDE overview, programming concepts: variables, functions, conditional statements.Concept of GPIO in Atmega 328P based Arduino board, UART concept, timers, interfacing with LED,LCD and keypad, serial communication using Arduino IDE Concept of ADC in Atmega 328P based Arduino board, interfacing with temperature sensor (LM35), LVDT, strain gauge,accelerometer,Introduce Arduino IDE for Embedded System Development

UnitIII	D. C. Machines	8hrs						
of D.C. motor, a motor (series ar	orking principle of D.C. generator, emf equation of D. C. generator, wo ypes of D.C. motor, back emf, torque equation for D.C. motor, character d shunt only), three-point starter for D.C shunt motor, methods for speer series motors, industrial applications.	ristics of D.C.						
UnitIV	tIV Three Phase Induction Motor							
characteristics;	Teature, working principle of three phase induction motors, types; torque power stages; efficiency, starters (auto transformer starter, star delta star istrial applications.							
UnitV	Special Purpose Motors	9hrs						
industrial applic	orking principle, characteristic and applications of stepper motors mode ations, brushless DC motors construction & drives- unipolar and bipolar s, construction, working principle & types, descriptive treatment for AC	r, single phase						
2]S. K. Bhattac 3] Nagrath & K	in, "Electrical Machines", Dhanpat Rai & Sons narya, "Electrical Machine", Tata Mc Graw Hill publishing Co. Ltd,2nd othari, "Electrical Machines", Tata Mc Graw 1kh, 'Microcontrollers Theory and Applications', TATA McGraw Hill	Edition						
References: 1] Electrical Ma 2]A.E. Fitzgera Publication Ltd	chines, Lowe, Nelson Publications. d, Charles Kingsley, Stephen D. Umans, "Electrical Machines", TataMo							

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Component	Parameters	Marks	Total	Pass
CCA	Viva Voce for assessment of Understanding	20		
	Involvement, Participation, and Engagement	10	50	20
	Quality of Submission of Report	10		
	Attendance	10		
End Semester	Performance (External)	25	50	20
Evaluation (ESE)	Oral Examination (External)	25	50	20

Scheme for Theory Examination

Component	Level	Unit1	Unit2	Unit3	Unit4	Unit5	Total	assing
Continuous	Facult	5	5	5	5	5	25	20
Comprehensive	у							
Assessment(CC	Departmen	5	5	5	5	5	25	
A)	t							
	ι.	Unit Test 1(UT1)			Unit Test	2(UT2)		
End Semester	Instit	10	10	10	10	10	50	20
Examination(ES	ute							
E)								

CO-PO Mapping

СО	P O 1	PO 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	P O 1 0	P O 1 1	P S O 1	P S O 2	P S O 3
CO1	3	2		2	3	-	-	-	-	-	2	2	2	2
CO2	3	3	3	3	3	-	-	-	-	-	2	3	2	2
CO3	3	3	2	-	3	-	-	-	-	-	2	3	2	-
CO4	3	3	-	3	3	-	-	-	-	-	2	3	2	-
CO5	3	2	3	3	3	-	-	-	-	-	2	3	2	2

3:High,2:Moderate,1:Low, 0:NoMapping

Fitle 6		'ech in I e Cours						<i>,</i>	<u> </u>		L	Т	Р	Credi	
Fechn			c. mu	ustila	Licci	omes			u	ŀ				3	
	0	, o de: RA	124PC4	01							3	0		-	
		e-Requis			lectri	cal En	ginee	ring, F	Basic F	Electr	onics I	Engine	eering	ç.	
This o nicroj	cours proc	scription se provid essors an applica	les an i 1d mic											data	
l.Und	ersta	bjective nd the Fu Arduinc	ndame			.				ollers:					
	se Lo	earning	Outco	omes:											
CO		After tl		-	on of t	he cou	rse th	e stud	ent		Bloon	-	<u> </u>		
		should									level		script		
CO	1	Understa Architec	0	Microp	process	or and	Micro	control	ler		BL- 2	- 2 Explain ideas or concepts			
CO	2	Introduction to Arduino IDE,Program Arduino IDE & Interfacing sensors with Arduino IDE									BL-3 Execute or u concepts in practical situations			in	
CO	3	Test an	d evalı	uate p	erform	ance (of DC	machii	nes		BL- 4	Dif org att	Differentiate, organize, and attribute information		
CO	4	Explair applicat					ion, ty	pes ar	nd		BL - 2	De fur	scribe	ribe the ioning of	
CO	5	Identify method							contro	I	BL- 5	de	stify cision: utions	•••	
CO	1	Understa Architec	•	Microp	process	or and	Micro	control	ler		BL-2	Ex	plain i	ideas	
CO-P	PO M	lapping	:												
CO	P 01	PO 2	PO 3	PO 4	PO 5	PO 6	P O	PO 8	PO 9	PO 10	PO 11	P SO	PS O2	PS O3	
СО	3	2		2	3	-	7	-	-	-	2	1 2	2	2	
1	3	3	3	3	3						2	3	2	2	

	R Tec	h in R	Pohotic	rs and	Auto	matio	n Engi	neerii	$n\sigma \mid S$	VRT	ech (2	024 C	OURS	SE)
CO	-	3	2	co anu	3	matio			1610			3	2	
CO 3	3	-	2	-	_	-	-	-	-	-	2		-	-
CO 4	3	3	-	3	3	-	-	-	-	-	2	3	2	-
CO	3	2	3	3	3	-	-	-	-	-	2	3	2	2
5	5													
Teach One c weigh Asse CCA ESE	Assessments : Teacher Assessment: One component of CCA and one End Semester Examination (ESE) having 50%, and 50% weights respectively. Assessment Marks CCA 50 ESE 50 CCA are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group													
	ssion/		-	-		~~~~~~		1 1 10jt		Bilea,	110501	in a contraction	0100	·P
	Assess				ral exa	minati	ion							
Cours	se Con	tents:												
Expe	riment	No. 1	: In	nterfac	cing of	LED	to bli	nk aft	er eve	ry 1 se	ec.		02	Hrs.
based Objec 2. To	 Aim and Objectives: To interface an LED with a microcontroller (Atmega328P-based Arduino) and program it to blink on and off with a delay of 1 second. Objectives: 1. To understand the basic concepts of digital output using GPIO pins. 2. To implement a simple embedded application by controlling an LED. Outcomes: The ability to write and upload a simple Arduino program to control an LED. 													
GPIO Digita Delay An LF	Theoretical Background: GPIO (General-Purpose Input/Output): Digital Output: Delay Function: An LED (Light Emitting Diode) Arduino IDE:													
	LED Resis	equired ino Ur stor (22	l: 10 (or a 20Ω or	: 330Ω	-	328P-t	based b	ooard)						
•		lecting dboard	wires											
• Circui	Bread		L											
Circui	n Diag	. a												

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	JRSE)
1. Connect the anode (long leg) of the LED to a digital pin (e.g., Pin 13) of	
the Arduino.	
2. Connect the cathode (short leg) to one terminal of a resistor.	
3. Connect the other terminal of the resistor to the Arduino's GND pin.	
Results and Discussions: The LED successfully blinks ON and OFF with a 1-	
second interval, demonstrating the implementation of digital output and delay.	
Conclusion: The experiment demonstrates the interfacing of an LED with an Atmega328P-based Arduino board and its programming using the Arduino IDE. By controlling the GPIO pin and utilizing the delay function, we successfully created a simple embedded system to blink an LED at a 1-second interval. This experiment provides foundational knowledge in ambedded programming and digital output operations.	
foundational knowledge in embedded programming and digital output operations.	02 II ng
Experiment No. 2: Interfacing of LCD to display the message and interface with knymed to display the knymessed	02 Hrs.
with keypad to display the key pressed.	
Aim and Objectives:	
 Aim: To interface a 16x2 LCD with a microcontroller to display a custom message and integrate a 4x4 keypad to display the key pressed on the LCD. Objectives: 1. To understand the interfacing of a 16x2 LCD with a microcontroller. 2. To learn to program the LCD to display a custom message. 	
Outcomes:	
 Ability to interface and control an LCD using a microcontroller. Practical understanding of reading inputs from a keypad matrix. 	
Theoretical Background:	
1. LCD Basics	
2. Keypad Basics	
3. Microcontroller GPIO Operations	
Experimentation:	
Materials Dequired	
Materials Required: Arduino Uno (or any Atmega328P based board)	
 Arduino Uno (or any Atmega328P-based board) 16x2 LCD 	
 4x4 Keypad 	
 Resistors (as required) 	
 Potentiometer (for LCD contrast adjustment) 	
Breadboard and connecting wires	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) 5. Results and Discussions: The LCD successfully displayed a custom message on initialization. • Each key press on the keypad was accurately detected and displayed on the LCD. • 6. Conclusion: The experiment successfully demonstrated the interfacing of a 16x2 LCD and a 4x4 keypad with an Atmega328P-based Arduino board. A custom message was displayed on the LCD, and the corresponding key pressed was dynamically updated on the display. This experiment provided practical knowledge in creating interactive embedded systems using microcontrollers. Experiment No. 3:--- Display data using serial communication. 02 Hrs. Aim and Objectives: Aim: To understand and implement serial communication using an Atmega328P-based microcontroller (e.g., Arduino) to send data from the microcontroller to a computer and display it on a serial monitor. **Objectives:** 1. To understand the principles of serial communication and its role in data transmission. To learn how to configure UART (Universal Asynchronous Receiver-2. Transmitter) for serial communication. **Outcomes:** 1. Familiarity with serial communication concepts, including baud rate, data bits, and parity. 2. Ability to use UART for data transfer between a microcontroller and a computer. **Theoretical Background:** Serial Communication Basics • UART Protocol: Arduino Serial Communication: **Experimentation:** Materials Required: Arduino Uno (or any Atmega328P-based board) • USB cable Computer with Arduino IDE •

B Tech in Robotics and Automation Engineering S Y B Tech (2024 CO	URSE)
Results and Discussions:	
 The Arduino successfully transmitted data ("Hello, Serial Communication!") via UART. The message was displayed correctly on the Serial Monitor. 	
Conclusion:	
The experiment demonstrated the successful implementation of serial communication using an Atmega328P-based Arduino board. Data was transmitted via UART to a computer and displayed on the Arduino IDE's Serial Monitor. This experiment provided foundational knowledge of serial communication and its practical applications in embedded systems.	
Experiment No. 4: Interfacing of temperature sensor (LM35) and show output on LCD/serial terminal.	02 Hrs.
1. Aim and Objectives: To interface the LM35 temperature sensor with a microcontroller (Atmega328P-based Arduino) and display the measured temperature on an LCD or serial terminal.	
 Objectives: 1. To understand the working of the LM35 temperature sensor and its analog output. 2. To learn how to read analog data from a temperature sensor using the Arduino ADC (Analog to Digital Converter). 	
Outcomes:	
 Ability to interface and read data from the LM35 temperature sensor using the Arduino. Understanding how to use the Arduino ADC to convert analog voltage to digital values. Theoretical Background: LM35 Temperature Sensor: Analog to Digital Conversion (ADC): Arduino ADC Formula: LCD and Serial Communication: 	
Experimentation:	
Materials Required: • Arduino Uno (or any Atmega328P-based board)	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	(IRSE)
 LM35 Temperature Sensor 	
 16x2 LCD Display 	
• $10k\Omega$ Potentiometer (for LCD contrast)	
 Resistors, connecting wires, breadboard 	
Results and Discussions:	
• The temperature value from the LM35 sensor is successfully displayed on	
the 16x2 LCD and/or Serial Monitor.	
• The readings correspond to the real-time temperature in Celsius.	
Conclusion:	
The experiment successfully demonstrated the interfacing of the LM35	
temperature sensor with an Arduino board. By reading the analog output from the	
LM35 and using ADC for conversion, the temperature was displayed on both an	
LCD and the Serial Monitor.	
Experiment No. 5: Speed Control of Dc Motor	2 Hrs.
Aim and Objectives:	
Aim: To draw the speed characteristics of DC motor by	
1. Armature Voltage control method	
2. Field control method	
Objectives:	
1. To Implement Different Methods of Speed Control:	
2. Explore various methods like Armature Voltage Control, Field Flux	
Control, and Armature Resistance Control.	
3. To Investigate the Relationship Between Speed and armature voltage/field	
current	
4. Examine how the speed changes with varying load conditions and how this	
is compensated using control methods.	
Outcomes:	
1. Variable Speed Control	
2. By controlling the speed, the DC motor can operate more efficiently,	
reducing energy consumption.	
Theoretical Background:	
Introduction to DC Motors	
 Basic Theory of DC Motor Operation working with construction 	
 Types of DC Motor: Separately excited DC Motor. 	
 Self-excited DC Motor: DC Shunt Motor, DC Series Motor 	
 methods to control the speed of a DC motor: Armature voltage control 	
& Field Control	

	erimentation:	
Mate	erials Required:	
•	DC Shunt Motor	
•	Voltmeter & Ammeter	
•	Tachometer	
•	Rheostat	
•	connecting wires	
Resi	ilts and Discussions:	
$\Box Y$	ou would expect a linear relationship between the applied armature voltage	
	the motor speed. As the voltage increases, the speed of the motor should	
	ease as well.	
	the field control method, reducing the field current will increase the speed of	
the r	notor, and this relationship can be graphed as well.	
Cone	clusion:	
The	experiment demonstrated that speed control of a DC motor can be achieved	
using	g various methods.	
Exp	eriment No. 6:Study of Starters for AC & DC Motor	2 Hrs
4 im	and Objectives:	
	: Study of Starters for AC & DC Motor	
	ectives:	
1.	The objective of a starter for AC and DC motors is to provide a	
	rolled way to start the motor, ensuring that it operates efficiently and	
safe		
	Limit Inrush Current	
4.		1
	Control the Starting Process Protect the Motor	
3.	Control the Starting Process Protect the Motor Smooth Transition Ensure Safe Operation	
3. 4.	Smooth Transition Ensure Safe Operation	
3. 4. Out e	Smooth Transition Ensure Safe Operation comes:	
3. 4. Out 1.	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor	
3. 4. Out 1. 2.	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current	
4. Outo 1. 2. 3.	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating	
3. 4. Out 1. 2. 3. 4.	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating Reduced Mechanical Stress	
 3. 4. Oute 1. 2. 3. 	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating	
 3. 4. Oute 1. 2. 3. 4. 5. 6. 	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating Reduced Mechanical Stress Overcurrent Protection: Safety Outcomes	
 3. 4. Oute 1. 2. 3. 4. 5. 6. 	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating Reduced Mechanical Stress Overcurrent Protection: Safety Outcomes Improved Operational Safety pretical Background:	
3. 4. Out 1. 2. 3. 4. 5. 6. Theo	Smooth Transition Ensure Safe Operation comes: Understanding Different Starting Methods for ac and dc motor Motor Protection: Reduced Inrush Current Prevent Overheating Reduced Mechanical Stress Overcurrent Protection: Safety Outcomes Improved Operational Safety	

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	J RSE)
Experimentation:	
Materials Required: Basic Model of ac & dc starters Results and Discussions:	
Conclusion:	
Both AC and DC motors require appropriate starting mechanisms to ensure efficient operation and to prevent damage from excessive inrush currents. The choice of starter depends on the motor type, size, and application. DC motors often require more specialized control, especially in larger applications, while AC motors are more commonly controlled using methods like stator resistance, rotor resistance starter, Star-Delta , autotransformer or rotor resistance starter for smoother starts.	
Experiment No.7 : No load test and blocked rotor test on Three Phase Induction Motor.	2Hr
Aim and Objectives: Aim: To study No-load test and blocked rotor test on 3-phase induction motor. Objectives:	
 No-Load Test: Measures the motor's core losses, friction and windage losses, magnetizing current, and stray losses. Blocked Rotor Test: Determines starting current, starting torque, rotor impedance, and other characteristics related to the motor's performance during startup. Outcomes: 	
 The No Load Test is performed to measure the motor's performance when it runs without any mechanical load. This test helps assess the core losses, friction, and windage losses that occur when the motor operates without any external load. The Block Rotor Test is performed to simulate the motor's starting conditions, where the rotor is blocked, and the stator is energized. This test helps to measure the locked rotor current and assess the motor's performance under fault or starting conditions. 	
Experimentation:	
Theoretical Background: Three Phase Induction Motor working Principle No load and blocked rotor test on three phase induction motor Results and Discussions:	

B. Tash in Debatics and Automation Engineering S.V.B. Tash (2024 COI	
B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	JKSE)
□ The No Load Test is often used to determine the core losses and friction and	
windage losses in the motor. \Box The methods have been been been been been been been be	
□ The motor's efficiency can't be evaluated accurately at no load because there is	
no output power being delivered to the mechanical load.	
□ The results can be used to estimate the motor's no-load losses for efficiency	
calculation under different operating conditions.	
□ The blocked rotor current is usually several times higher than the rated current	
(typically 5 to 7 times the full-load current). This high current is due to the very	
low impedance of the stator windings when the rotor is stationary.	
□ The power factor is low because the motor is primarily inductive at this point,	
with the motor not producing any mechanical work (no rotation).	
□ The impedance (stator and rotor combined) can be derived from the voltage,	
current, and power measured during the test. This is used to calculate the starting	
torque and performance at startup.	
□ The locked rotor torque and starting conditions can be evaluated. The torque	
is typically very low when compared to the full-load torque, and the motor	
struggles to start under these conditions.	
Constructions	
Conclusion:	
The study of No-load test and blocked rotor test on 3-phase induction motor has	
been done by obtaining the results of the experiment.	
Experiment No. 8:Load Test On Three Phase Induction Motor	2Hr
Aim and Objectives:	
Aim: Load Test On Three Phase Induction Motor	
Objectives:	
1. To evaluate the performance of the induction motor under different	
load conditions.	
2. To calculate efficiency, slip, input power, output power, and power	
factor.	
Outcomes: expected outcomes from performing such a test:	
1. The input power is measured at different loading conditions (e.g., no-	
load, part-load, full-load)	
2. The mechanical output power is derived from the torque and speed of	
the motor.	
3. Efficiency curves : Typically, efficiency increases with load, peaking at	
or near full load, and then may slightly decrease if the motor is overloaded.	
4. Power Factor curve : The power factor will be lower at no-load and	
increase as the load increases.	
5. Slip curve : Slip increases as the load increases.	
Experimentation:	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COU	JRSE)
Theoretical Background:	
Construction and working of three phase induction motor	l
Results and Discussions:	l
The results can be used to plot graphs for:	l
• Efficiency vs Output power.	l
• Power factor vs output power.	l
• Input power vs Output power.	l
• Slip vs Output power	l
• Output Torque vs output power	l
• Speed vs output power	l
Conclusion:	l
The loading test provides essential data for evaluating the performance of a 3-phase	1
induction motor. The motor's efficiency, power factor, slip, and output power can	1
be used to determine its operational characteristics under different load conditions.	l
The test results also help in diagnosing motor performance and identifying areas for	l
improvement or maintenance	l
Textbooks:	

1] Ashfaq Husain, "Electrical Machines", Dhanpat Rai & Sons

2]S. K. Bhattacharya, "Electrical Machine", Tata Mc Graw Hill publishing Co. Ltd,2nd Edition

3] Nagrath & Kothari, "Electrical Machines", Tata Mc Graw

4] Ajay Deshmukh, 'Microcontrollers Theory and Applications', TATA McGraw Hill

References:

1] Electrical Machines, Lowe, Nelson Publications.

2]A.E. Fitzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", TataMcGraw Hill Publication Ltd. Fifth Edition.

3]Permanent Magnet Synchronous and Brushless DC Motor Drives, R. Krishnan, CRC press 4] Smarajit Ghosh, "Electrical Machines", Pearson Education, New Delhi. [R5]Kenneth J. Ayala, 'The 8051 Microcontroller', Cengage Learning

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Course Category	Program Specific	Course Code	RA124PC402
Course Title	Computer Graphics for Robotics		

Prereq	uisites: Applied Mathematics I, Applied Mathematics II, Engineeri	ng Draw	ing,
Comput	tational Thinking and C- programming		
Course	e Objectives: (Min 3)		
2. To	o introduce students with fundamental concepts and theory of c o articulate the use of 2D and 3D interpolation methods for con o demonstrate the applications of 2D and 3D transforms for rob	nputer g	graphics.
	present mathematical elements of important curves and surface		maties.
5.	•		
Course	e Outcomes: After successful completion of the course the stud	lent wil	l be able to
CO	After the completion of the course the student should be	Bloom	n's Cognitive
	able to	level	Descriptor
CO1	Describe the basics of different graphics systems and analytic geometry.	2	Understand
CO2	Use of geometric transformations on graphics objects and their application in robot kinematics analysis.	3	Apply
CO3	Demonstrate the application of Bezier curves and interpolation in robot path planning	3	Apply
CO4	Apply concept of geometric algebra for modelling in robotic physics	3	Apply

Syllabus

Unit I	Analytic geometry	7 hrs
	2D analytic geometry - mathematical representation of line, conic sections, intersection of 2D lines, intersection of line and circle, 3D analytic geometry - mathematical representation of 3D line, planes, intersection of 3D lines, intersection of planes. Hidden surface removal	
Unit II	Transforms:	8 hrs
	Introduction to 2D and 3D transforms: Scaling, shear, rotation, reflection, Concept of homogenous co-ordinates, General Rotation andgeneral reflection matrix, Concatenated matrices, Application of 3D transformation to robotics: Cylindrical robot, Application of 3D transformation to robotics: Spherical robot/SCARA robot	
Unit III	Interpolation:	8 hrs
	Linear interpolation, Lagrange interpolation, Spline interpolation, Spatial	0 11 5

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B T	ech in Robotics and Automation Engineering S Y B Tech (2024 COUF	RSE)
	interpolation: Inverse distance weighted method, Nearest neighbour, Natural neighbour, Shape function, Cubic interpolation, Interpolating quaternion	
Unit IV	Curves and Surfaces	8 hrs
	Bezier curves. B- spline, 3D surfaces, Surfaces of revolution, Seep surfaces, Bezier Surface Patch, Applications of Bezier and β spline curves for robot path planning	
Unit V	Geometric Algebra	8 hrs
	Geometric products in 2D, geometric product in 3D, outer product of 3D vectors, axioms, inverse of vectors, reflection and rotation, applied geometric algebra for modelling of robotics physics	

References

- 1. Jon Vince, Mathematics for Computer Graphics, Springer, ISBN: : 978-1-84628-034-4
- 2. Chopra Rajiv, "Computer Graphics", S. Chand and Co. Pvt. Ltd., ISBN: 81-219-3581-4
- 3. Roger D, Adams A. J. "Mathematical elements for computer graphics", McGraw HillEducation, ISBN: 978-0070486775
- 4. Davis Martin J, "Computer Graphics", Nova science Publishers, ISBN: 9781617618116

Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	
CCA	Demontres and	UT1			UT2	UT2 25		20
	Department	5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

Scheme for Examination

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	-	-	-	-	-	-	-	-	1	1	1
CO2	2	-	2	-	3	-	-	-	-	-	-	1	1	1
CO3	2	2	2	-	-	-	-	-	-	-	-	1	1	1
CO4	2	2	2	-	3	-	-	-	-	-	-	1	1	1
C05	2	2		2		-	-	-	-	-	-	1	1	1

3: High, 2: Moderate, 1: Low, 0: No Mapping

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Fitle of	f the Course: Computer Graphics for Robotics Lab	L	Т	Р	Credi			
	Code: RA124PC402	0	0	2Hrs/ Week	1			
Course	e Pre-Requisite: Applied Mathematics I, Applied Mathemat	ics I	I, Er	ngineering 1	Drawing			
Compu	tational Thinking and C- programming							
Course	e Description: The robots are required to perform complete	x mo	otion	s while pe	rformin			
various	industrial tasks. The controller of robots need co-ordinate dat	a to	mov	e along des	ired pat			
especia	lly in case of continuous motion. This subject provides metho	ds fo	or ge	nerating co	-ordinat			
data fo	complex 2D and 3D profiles. The subject is predominant to	make	e stud	dents under	stand th			
			5 Sta		stand in			
tundam	entalsof robot forward kinematics and robot simulation as w	ell.						
Course	e Objectives:							
1. To ii	ntroduce students with fundamental concepts and theory of co	mpu	ter g	raphics.				
2. To a	rticulate the use of 2D and 3D interpolation methods for com	puter	: graj	phics.				
3. To d	emonstrate the applications of 2D and 3D transforms for robo	ot kir	nema	tics.				
4. To p	resent mathematical elements of important curves and surface	es.						
Course	e Learning Outcomes:							
CO	After the completion of the course the student should be	D1	0.010	's Cognitiv	10			
CO	able to		vel	Descriptor				
CO1	Describe the basics of different graphics systems and analytic geometry.		2	Understa				
CO2	Use of geometric transformations on graphics objects and their application in robot kinematics analysis.		3	Apply	7			
CO3								
CO4	Apply concept of geometric algebra for modelling in robotic physics		3	Apply	7			

CO-PO Mapping:

СО	PO1	PO2	PO 3	PO 4	PO5	PO 6	Р О7	PO8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	1	2	-	-	-	-	-	-	-	-	-	1	1	1
CO2	1	2	2	-	2	-	-	-	-	-	-	1	1	1

B	Tech	in Ro	<u>botic</u> s	and	Autom	ation	Eng	gineeri	ng S	Y B	Tech	(2024	COU	RSE)
CO3	1	2	2		2	-	-	-	-	-	-	1	1	1
C O 4	1	2	2	1	2	-	-	-	-	-	-	1	1	1
ne cor	r Ass npone respe	essment ent of (ectively	CCA a	nd or	ne End	Seme		Examiı Marks 25 25	natior	ı (ESI	E) hav	ing 50)%, and	1 50%
Discuss SE: A Course xperin im an o Crea Outcon tudent	ion/ I ssessr Cont nent d Ob ite 21 nes: will l	nternal nent is tents: No. 1: jective D and 3	l oral e based To es: BD gra	etc. l on o Creat	ral exa te 2D a	minat and 31	ion O gra	uphic el	emer	ıts			ntion/ G	2 Hr
Describ Experin Aim an Forward Dutcon Student Jse of g inemat	nent d Ob l kine nes: will l geome	No. 23 jective matics be able etric tra	: Fo es: of pla to: ansform	rward	l kinen obot us	natics	of pl D tra	laner ro	bot u	sing 2	2D tra	nsforr		2 Hr
Experin ransfor Aim an ransfor Dutcon pplicat	matio d Ob matio nes: U	on jective on Jse of g	e s: Fo geome	rwarc tric tr	l kinem ansfor	natics matio	of ar	ticulate	ed/SC	ARA	robot	using	-	2 Hr:
Experin Aim an Dutcon Student Demons	d Ob nes: will l	jective be able	es: 2D	curv	e gene	ration	: Baz	zier, B	spline	2	robot	path p	blanning	2 Hr

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURS	SE)
Experiment No. 5: 3D surface generation: Surface of revolution, sweep surface	2 Hrs.
Outcomes:	
Aim and Objectives: 3D surface generation: Surface of revolution, sweep surface	
Outcomes:	
Student will be able to:	
1. Use of geometric transformations on graphics objects and their application in	
robot kinematics analysis.	
2. Demonstrate the application of Bezier curves and	
interpolation in robot path planning	
Experiment No. 6: Animations using transformations	2 Hrs.
Aim and Objectives: Animations using transformations	
Outcomes:	
Student will be able to:	
Describe the basics of different graphics systems and transformations.	
Textbooks:	

- 1. Roger D, Adams A. J. "Mathematical elements for computer graphics", McGraw Hill Education, ISBN: 978-0070486775
- 2. Davis Martin J, "Computer Graphics", Nova science Publishers, ISBN: 9781617618116

References:

1] Chopra Rajiv, "Computer Graphics", S. Chand and Co. Pvt. Ltd., ISBN: 81-219-3581-4

2] Davis Martin J, "Computer Graphics", Nova science Publishers, ISBN: 9781617618116

Experiment wise Measurable students Learning Outcomes:

Assignment/ Experiment	Contents	CO- mapped
1	Creating 2D and 3D graphic elements	1
2	Forward kinematics of planer robot using 2D transformation	2
3	Forward kinematics of articulated/SCARA robot using 2D transformation	2
4	Generating Curves and Surfaces using Interpolation, 2D curve generation: Bazier, □ spline,	3
5	3D surface generation: Surface of revolution, sweep surface	2,3
6	Animations using transformations	2,3

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Course Category	Program Specific	Course Code	RA124PC402
Course Title	Design of Machine Element		

	Teachi	ng Scheme		Evaluation Scheme						
					Theor	y Mar	ks		ctical arks	
L	Т	Р	Cr	Exam		M	in		Min	
					Max	Ma	rks	Max	for	
						for H	Pass		Pass	
2	0	0	2	CCA	50	20				
	Tota	l Hours		ESE	50	20	40	-	-	
26	0 0 T		Total hrs: 26		100					

Prerequisites:

Course Objectives: (Min 3)

1 Define and explain various terms connected to the design of machine Elements-I like static strength, fatigue strength, Impact stresses, theories of failures, rigidity-based design, factor of safety, and stress concentration etc

2. Explain how engineering design make use of the principles learnt in science courses and identify their practical applications

3. Design and analyse problem-solving skill in design of machine elements with appropriate assumptions and correct methodology

4. Develop student's ability to understand the Stresses in threaded Fasteners under different loading conditions & Evaluate the forces, stresses, displacements and other related parameters necessary to design different springs

5. Demonstrate the ability to develop designs for different gears

Cour	se Outcomes: After successful completion of the course the student will be able to
CO1	Understand the technique of theories of failure, stress concentration, fatigue strength
	etc.
CO2	Design shaft, keys, keyway, flange and coupling for specific applications
CO3	
CO4	Design machine elements like, gears, power screws, springs and other simple machine
	elements.
CO5	Apply the design concepts for the design of specific robotic elements
	Syllobus

Syllabus

Unit I	Design Process: Machine Design, Traditional design methods, Basic	7 hrs
	procedure of Machine Design, Requisites of design engineer, Design of	
	machine elements, Sources of design data, Use of standards in design,	
	Selection of preferred sizes. Design of Simple Machine Parts: Factor of	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Te	ech in Robotics and Automation Engineering S Y B Tech (2024 COUR	RSE)
	safety, Service factor, Design of simple machine parts, Cotter joint, Knuckle joint	
Unit II	Shafts: Design considerations in Transmission shafts with spur gear and pulley, splined Shafts, Shaft design on strength basis, Shaft design on torsional rigidity basis, ASME code for shaft design. Keys: Classification of keys, Design considerations in parallel and tapered sunk keys, Design of square, flat and Kennedy keys. Couplings: Design considerations, Classification, Design of Rigid, Muff coupling, Flange coupling and Flexible bushed pin coupling	8 hrs
Unit III	Power Screws: Types of screw threads, multiple threaded screws, Torque analysis with square and trapezoidal threads, Self-locking screw, Collar friction torque, Stresses in power screws, design of screw and nut, design of Screw jack.	8 hrs
Unit IV	Spur Gears: Classification of Gears, Selection of type of gears, Law of Gearing, Gear terminology, Standard system of gear tooth, force analysis, Interference and undercutting, number of teeth, gear tooth failures, selection of material. Specifications of spur gear, helical gear, bevel gear, worm gears (Design not included)	8 hrs
Unit V	Springs and bearings Design of Helical Spring-Types, Materials, Static and Variable load Bearing -Antifriction Bearing-Types, Life of Bearing, Reliability Consideration, Selection of Ball and Roller	8 hrs

References

Text Books:

- Bhandari V.B., "Design of Machine Elements", Tata Mcgraw-hill publishing, 2020 ISBN 978-00-70-681798.
- Machine Design by R.S Khurmi and J.K.Gupta, S.Chand Publishers, New Delhi. 2020 ISBN-13 – 8121925371-978-8121925372.
- 3. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke, McGraw Hill International edition, 2003
- 4. Design of Machine Elements, M.F.Spotts, T.E. Shoup, L.E. Hornberger, S.R. Jayram and

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

C.V. Venkatesh, Pearson Education, 2006

References Books:

- 1. Design Data Hand Book Mechanical Automobile -S.Md.Jalaludeen 2022 Edition
- Design Data: Data Book of Engineers by PSG College-Kalaikathir Achchagam -Coimbatore Paperback – 15 November 2020
- Design of Machine Elements by C.S.Sharma & Kamlesh Purohit, Prentice Hall of India Pvt. Ltd
- 4. C.S. Sharma and Kamlesh Purohit Design of Machine Elements-PHI Learning Private Limited (2013)

Journal Papers:

1.https://www.sciencedirect.com/science/article/pii/.../pdf?md5...pid=1-s2.0...1

- 3. <u>http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1451585</u>
- 3. https://link.springer.com/article/10.1007/s00170-014-6152-5

4. https://eclass.upatras.gr/modules/document/file.php/MECH1178

Authors, Title of Paper, Name of Journal, Vol (issue), pp, Year, DOI

You Tube:

1.https://nptel.ac.in/courses/112/105/112105124

2.http://nptel.ac.in/cour ses/112105125/pdf/ Module-1_Lesson1.pdf

Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	20
CCA	Dementers and	U	Г1		UT2		25	
	Department	5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

Scheme for Examination

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO Mapping

ſ		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
	CO1	3	-	3	3	-	-	-	-	-	1	1	2	-	-

	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)													
CO2	3	3	3	2	1	-	-	-	-	1	-	2	-	-
CO3	3	2	2	3	-	-	-	-	-	3	-	2	-	-
CO4	3	3	3	2	-	-	2	1	-	1	1	2	-	-
CO5	3	3	2	2	-	-	2	1	-	2	1	3	-	-

3: High, 2: Moderate, 1: Low, 0: No Mapping

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Cours	se Category	MDM 2	Cours	se Code	RA124MDM402			
	Course Title Mechatronics and Microcontroller							
Prerequisites: Knowledge of basic of robotics. Fundamentals of mathematics (linear algebra, calculus, differential equations) Basics of programming (Python, C++, or MATLAB) Understanding of control systems and mechatronics								
Course	Objectives:							
auto 6. Dev prot 7. Ana prin 8. App tech 9. Dev 10. Exp	omation and con relop proficiency tocols essential f alyze various ser iciples, interfaci oly kinematic maniques for design relop algorithms olore the integrat	les of mechatronics, robotic syst trol systems. y in microcontroller programmi for robotic applications. nsors and actuators used in robo ng techniques, and real-time dat odeling, control algorithms (inc gning robotic motion and autom for robot motion planning and tion of IoT, AI, and cloud compt and connected robotic application	ng, interfacing, tics, focusing of a acquisition luding PID), ar ation systems. navigation. uting with med	, and cor on their v nd trajec	nmunication working tory planning			
Course	Outcomes: Afte	r successful completion of the c	ourse the stude	ent will l	be able to			
CO1		an understanding of mechatro			's Cognitive			
CO1	Write and	implement embedded pr ers to control robotic systems	rograms for	level 3	Descriptor Apply			
CO2	Select and integrate appropriate sensors and actuators for robotic applications, ensuring efficient data processing and motion control.		3	Apply				
CO3		atic modeling, PID control, a niques to develop robotic m		3	Apply			
CO4	Build and test real-world robotic applications such as line- following robots, robotic arms, and IoT-connected robotic 3 Apply systems.							
CO5		ation tools (MATLAB, ROS, nologies like AI and IoT for adv.	,	3	Apply			

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) Syllabus

Unit I	Introduction to Mechatronics & Robotics	5 hrs
	Definition & Scope of Mechatronics	
	Components of Mechatronic Systems: Sensors, Actuators, Controllers,	
	Interfaces	
	Fundamentals of Robotics: Types, Applications, Degrees of Freedom	
	(DOF)Basic Electronics Review: Ohm's Law, Kirchhoff's Laws,	
	Circuit ComponentsIntroduction to Embedded Systems for Robotics	
Unit II	Microcontrollers	6 hrs
	Introduction to Microcontrollers: Architecture, Types (PIC, AVR, ARM, Arduino)Programming Microcontrollers: Basics of Embedded C, Python, and Arduino IDEI/O Interfacing: Digital & Analog Inputs/Outputs, PWM, ADC Communication Protocols: UART, SPI, I2C, CAN BusInterrupts & Timers for Real-Time Control	
Unit III	Sensors & Actuators	5 hrs
	Types of Sensors:Proximity Sensors (IR, Ultrasonic, LiDAR)Motion Sensors (Gyroscope, Accelerometer, IMU)Vision Sensors (Cameras, OpenCV Basics)Types of Actuators:DC Motors, Servo Motors, Stepper MotorsPneumatics & Hydraulics in RoboticsMotor Driver Circuits (L298N, H-Bridge)	
		. 1
Unit IV	Robotics System Design & Control	5 hrs
	Kinematics & Dynamics of Robotics,PID Control for Motion & Stability,Trajectory Planning & Motion Control,Introduction to ROS (Robot Operating System), Simulation Tools: MATLAB, Gazebo	
Unit V	Project-Based Learning & Case Studies	5 hrs
	Microcontroller-Based Robotics Projects:Line Follower Robot,Obstacle	•
	Avoidance Robot Robotic Arm Control using Microcontroller,IoT-	
	Based Smart Robot, Industry Case Studies: Industrial Robots, AGVs,	
	Drones,Future Trends: AI in Robotics, Edge Computing, Swarm Robotics	

References

Mechatronics: Principles and Applications - Godfrey C. Onwubolu

• Covers fundamental mechatronics concepts, sensors, actuators, and control systems. Introduction to Mechatronics and Measurement Systems – David G. Alciatore, Michael B. Histand

• Provides an overview of mechatronic components, interfacing, and control techniques. Microcontroller Theory and Applications with the PIC18F – M. Rafiquzzaman

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

• Explains microcontroller programming, interfacing, and applications for embedded systems.

Programming Arduino: Getting Started with Sketches – Simon Monk

Unit III Component Level Unit Unit Unit IV Unit Total Pass V Ι Π 5 5 5 5 Faculty 5 25 UT2 CCA UT1 20 Department 25 5 5 5 5 5 ESE 10 10 10 10 10 50 Institute 20

Scheme for Examination

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

	РО	PO	PS	PS	PS									
	1	2	3	4	5	6	7	8	9	10	11	01	O2	O3
CO	3	2	1	-	2	-	-	-	-	-	-	1	1	-
1														
CO	3	3	2	2	1	-	-	-	-	-	-	2	1	1
2														
CO	3	3	3	2	3	1	-	-	-	-	-	2	1	1
3														
CO	2	3	3	3	3		1	-	-	-	1	3	1	1
4														
CO	3	2	3	3	3	1	-	-	-	2	1	3	1	1
5														

3: High, 2: Moderate, 1: Low, 0: No Mapping

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Cour	rse Category	OE2	Course Code	RA124OE402				
Co	ourse Title	Financial Management	and Costing					
Prereq	luisites:							
~								
	e Objectives: (1 1. 1					
		ncial management principl						
		capital and analyze fund f						
		ethods for material, labor, etary control and variance						
			of the course the student will be	able to				
		tial statements and ratio pe						
		cts using capital budgeting						
		ng capital and cost of capit						
-		methods for accurate cost of						
	** *		e analysis for cost optimization.					
000		Sylla						
T T •4 T	T •••1			0.1				
Unit I		Management & Capital		8 hrs				
		Financial function, Scope, goals and tools. Sources of finance, corporate						
		planning and financial management. Financial Statements: Balance sheet, profit and loss account. Ratio Analysis: Classification, Ratio						
			ng and Financial Leverage.	110				
		na na miniariona. Operam	ig and i manetal Leverage.					
	Control of	Capital Expenditure, Eva	luation Process-Payback approa	ch.				
			ent Value Method Vs Internal R					
		Replacement cost and dise						
	flow.	-						
Unit I	0	Capital Management		8 hrs				
			ital, types of working capital,					
		working capital,	1 cost of conital Frends Flare					
			l, cost of capital. Funds Flow					
	Analysis: Objectives	concepts, s, and Techniques of Funds	Flow Statement					
	Objectives	s, and reeningues of runus	Thow Statement.					
Unit I	II Costing			8 hrs				
	8	of costing and elements	of cost. Material Cost: Differ					
		e	ials. Material losses - Wastage a					
		1 0	erent methods wages and incent					
	plans. Prin	ciples of good remuneration	ng system, labour turnover and i	ts				
	methods.							

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Te	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)						
	Depreciation: Concept, importance and different methods of depreciation. Estimation of material, machining and labour cost machining. Overheads: Classification, collection of overheads, Primary and Secondary apportionment of overheads, absorption of overheads. Machine hour and labour hour rate. Under and over absorption of overheads. Estimation of overheads.						
Unit IV	Budgetary control and variance Analysis	8 hrs					
	Material, Labour, Overhead, Sales. Profit, Product-mix and Yield Variance. Cost control: Capital cost control-the nature of control, elements of cost control programme, project planning and scheduling, cost reporting and corrective action. Capital cost control repetitive operating cost, standard costs, cost reporting and corrective action.						
Unit V	Types of Costing Methods	7 hrs					
	Concept, development & use of standard costing, Marginal Costing: Use of Marginal Costing in decision-making Activity based costing: Concept, cost drives, applications. Process costing: Concept, transfer cost, concept of by products, joint costing, scrap, waste, losses, cost of quality.						

References

Text Books:

1. N. K. Prasad, "Principles and Practice of Cost Accounting", Syndicate Pvt. Ltd., Calcutta

2. M. Pandy, "Financial Management", New Delhi Vikas Publication House Pvt. Ltd.,

ISBN 81-259-0638-X

3. M. Y. Khan, P. K. Jain, "Financial Management", Tata McGraw Hill Publishing Ltd.

4. B. K. Bhar, "Cost Accounting Methods and Problems", Academic Publishers, Calcutta

References Books:

1. Henry M. Steiner, "Engineering Economics Principles", McGraw Hill Publication.

2. C.B. Gupta, "Fundamentals of Business", Sultan Chand & Co.,

3. P. A. Samualson, "Economics", McGraw Hill International.

4. K. K. Dewett, "Modem Economic Theory", Sultan Chand & Co., ISBN 81-219-0331-1

5. Colin Drury, "Management and Cost Accounting", English Language Book Society,

Chapman & Hall London.

Scheme for Examination

B Tech i	in Robotics ar	nd Autom	ation Eng	ineering	S Y B Te	ch (2024	COURSE)
Component	Level	Unit I	Unit II	Unit III	Unit IV	Unit V	Total	Pass
	Faculty	5	5	5	5	5	25	
CCA	Domontra ont	U	Г1		UT2		25	20
	Department	5	5	5	5	5	25	
ESE	Institute	10	10	10	10	10	50	20

CCA: Continuous Comprehensive Assessment (CCA), ESE: End Semester Examination, UT: Unit Test

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	1	0	0	2	0	2	2	2	1	2	1
CO2	3	3	2	2	1	2	0	2	0	2	2	1	3	2
CO3	3	3	2	2	1	0	0	2	0	2	2	1	3	2
CO4	3	3	3	2	2	1	0	0	2	2	2	1	3	3
C05	3	3	3	2	2	1	2	2	0	3	3	2	3	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering S Y B Title of the Course: Robot Operating System	L L	2024 T	P	KSE) Credit
Course Code: RA124CSEC403	1		2	2
Course Pre-Requisite: python or C++	1			1
Course Description: The Robot Operating System (ROS) offers a set of to assist software developers in creating robotic applications. It provides the set of the set				0

abstraction, device drivers, libraries, visualization tools, message passing, and package management. ROS is widely used in some of the most advanced and innovative robots today. With a strong developer community and robust support for integrating ROS with various robotic systems, it has become an ideal choice for a wide range of industrial applications.

Course Objectives:

1.To introduce students with the fundamental concepts and principles of robotic automation.

2. To explain the use of various devices connected to robotic modules.

3. To demonstrate an understanding of various types of robotic applications.

4. To apply and analyze industry-based projects and advanced learning.

Course	e Learning Outcomes:		
CO	After the completion of the course the student should be	Bloom	n's Cognitive
	able to	level	Descriptor
CO1	Demonstrate the execution of Robot Operating System (ROS) commands.	3	Apply
CO2	Integrate the robot with embedded systems.	3	Apply
CO3	Develop and simulate robotic applications.	3	Apply

CO-PO Mapping:

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PSO 1	PSO 2	PSO 3
CO 1	3	2	2		3			2			3	2	2	2
CO 2	3	3	3	2	3	2		3	2	2	3	3	3	2
CO 3	3	3	3	3	3	2		3	3	3	3	3	3	2

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Assessments :

Teacher Assessment:

Two components of CCA, One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks	
CCA	10	
CCA	30	
CCA	10	
ESE	50	
CCA are based on assignment/declared test/qu	iz/seminar/Group Discussions etc.	
ESE: Assessment is based on 100% course cor content (normally last three modules) covered	00	se
Course Contents:		
Unit 1:-Introduction to ROS		5 Hrs.
Definition and purpose as a meta-operating system ROS, ROS Ecosystem, History and Evolution, Ros Communication, Coordinate Transformation, File	s Terminology, Message	
Contents in ROS		
Basics of Ubuntu, Ros Command list, Ros shell co ,Ros Information commands, Roscommands, Ros Visualisation Tool (Rviz), Ros GUI development ,rqt Plugins ,rqt_graph ,rqt_plot	package commands,Tools:3D	
Unit 2:- ROS Embedded system		4Hrs.
OpenCR: Characteristics, Board Specification, Est basics of serial communication, python/c++ and se Firmware: Hardware, Software, Development envi using RViz.	rial communication, TurtleBot3	
Unit 3:-Manipulator, Navigation and Slam		4 Hrs.
Introduction, Manipulator Structure and Control, Gazebo Simulation Applying to the Actual Platfo Navigation of Mobile Robot, Robot hardware Co	rm, Navigation and Components,	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | **S** Y **B** Tech (2024 COURSE)

Environment of SLAM, ROS Packages for SLAM, Execute SLAM, SLAM Application

Textbooks:

- 1. "ROS Robotics Projects" by RamkumarGandhinathan
- 2. "Learning ROS for Robotics Programming" by Aaron Martinez and Enrique Fernández
- 3. Concise Introduction to Robot Programming with ROS2 by Francisco Martin Rico

1. **References:**

- 2. Programming Robots with ROS_A Practical Introduction to the Robot Operating System (PDF Drive)
- 3. Jason M. O'Kane, A Gentle Introduction to ROS, independently published, ISBN 9781492143239

4. C. Fairchild, T. L. Harman, "ROS Robotics by Example" Pakt Publishing, ISBN: 9781785286704

5.Lentin Joseph, "Robot Operating System (ROS) for Absolute Beginners", Apress Publication, ISBN: 9781484234044.

Unit wise Measurable students Learning Outcomes:

1. Demonstrate proficiency in executing ROS commands, managing ROS packages, and utilizing essential tools like Rviz and rqt.

2. Describe the characteristics and specifications of OpenCR and establish a ROS development environment for embedded systems.

3. Simulate and control a robotic manipulator using Gazebo and ROS.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering S	Y B Teo	ch (202	4 COU	J RSE)
Title of the Course: Robot Operating System	L	Т	Р	Credit
Course Code: RA124CSEC403	1	0	2	2
Course Pre-Requisite:C++ / Python				

Course Description: The Robot Operating System (ROS) offers a set of libraries and tools designed to assist software developers in creating robotic applications. It provides features such as hardware abstraction, device drivers, libraries, visualization tools, message passing, and package management. ROS is widely used in some of the most advanced and innovative robots today. With a strong developer community and robust support for integrating ROS with various robotic systems, it has become an ideal choice for a wide range of industrial applications.

Course Objectives:

- 1. To Introduce students with the fundamental concepts and principles of robotic automation.
- 2. To explain the use of various devices connected to robotic modules.
- 3. To demonstrate an understanding of various types of robotic applications.
- 4. To apply and analyze industry-based projects and advanced learning.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom	n's Cognitive
	able to	level	Descriptor
CO1	Demonstrate the execution of Robot Operating System	3	Apply
	(ROS) commands.		
CO2	Demonstrate the execution of Robot Operating System	3	Apply
	(ROS) commands.		
CO3	Develop and simulate robotic applications.	3	Apply
CO4	Write a program to implement G-mapping for a robot.	3	Apply
CO5	Integrate the robot with embedded systems.	3	Apply
CO6	To understand the principles and operations of industrial	3	Apply
	robots in production lines.		

CO-PO Mapping:

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO 1	3	2	2		3			2			3	2	2	2
CO 2	3	2	2		3			2			3	2	2	2
CO 3	3	3	3	3	3	2		2	2	2	3	3	3	2
CO 4	3	3	3	3	3	2		2	2	2	3	3	3	2

]	B Tec	h in F	Roboti	cs and	l Auto	matic	on En	gineer	ring S	SYB'	Fech (2	2024 C	OURS	E)
CO	3	2	3	2	3	2		3	3	3	3	3	3	2
5														
CO 6	3	2	3	2	3	3	2	3	3	3	3	3	2	2
6 Asses: Teach One c weigh Asse CCA ESE CCA ESE: Discu: ESE: CCA ESE: Aim: To un Topic:	her As omports resp ssmer are ba ssion/ Assess Se Con rimen ns and dersta s, Serviunica	seessn nent o bectiv it sed or Intern sment t No. Node	n pract nal ora is bas s: 1:- RC es. d imple	ical pe l etc. ed on DS Ess ement	erform oral ex entials the fu	ed/ Q xamin s: Intro undam es, and	uiz/ N ation oducti	Mark 50 50 Iini-Pi on to concepore the	ination s roject a ROS T bir role	assigne Fopics,	·		, and 5	0%
3. 4.	fram To le actic To a To d in a aluate	eworl earn h ons. nalyz levelo simul	k of R now to e the in op hand ated or	OS. create nterpla ls-on e physi	and n ay betw experie cal en	nanage ween I ence w	e ROS ROS c /ith in ment.	S node compo nplemo	s, topi nents f	cs, serv in a rol ROS f		nd		
1.			unders and Ac		ng of l	ROS c	omm	unicati	on pa	radigm	s: Topi	cs,		

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

2. Ability to create and manage ROS nodes for robot control and data exchange.

Theoretical Background:

- Overview of ROS architecture and its communication framework.
- Definition and roles of Topics, Services, Actions, and Nodes.
- Communication flow in ROS: Publisher-Subscriber, Client-Server, and Action protocols.
- Real-world examples of implementing ROS in robotic systems.

Experimentation:

- 1. Environment Setup:
 - Install and configure ROS on a compatible system.

2. Creating and Testing Nodes:

- Write Python or C++ scripts to create Publisher and Subscriber nodes.
- Test inter-node communication using custom messages.

3. Exploring Services and Actions:

- Develop a ROS Service and test it using a Client.
- Implement Actions for asynchronous task execution.
- 4. Simulation:
 - Use Rviz or Gazebo to simulate and visualize communication between nodes.

Results and Discussions:

- Analyze the behavior of Topics, Services, and Actions in the implemented system.
- Evaluate the communication latency and reliability between nodes.
- Discuss challenges faced during implementation and potential solutions.
- Compare the use cases of Topics, Services, and Actions in different scenarios.

Conclusion:

This study provided a comprehensive understanding of ROS communication mechanisms and their implementation. By exploring Topics, Services, Actions, and Nodes, students gained the theoretical and practical expertise needed to build efficient and robust robotic systems. Future work may involve applying these concepts to more complex robotic platforms and real-world applications.

B Tech in Robotics and Automation Engineering S Y B Tech (2024 CO	URSE)
Experiment No. 2:- Simple interaction with the course simulation environment and Nodes.	2 Hrs.
Aim:	
To familiarize students with the course simulation environment and enable basic interaction with simulated robotic systems using fundamental ROS commands and tools.	
Objectives:	
 To understand the setup and features of the simulation environment. To learn how to use tools like Rviz, Gazebo, and rqt for robot visualization and control. 	
3. To perform simple tasks such as moving a robot or simulating sensor data.	
4. To establish a foundation for more complex robotic simulations and programming.	
Outcomes:	
 Basic understanding of the course simulation environment and its functionalities. Proficiency in using ROS-based simulation tools like Rviz, Gazebo, and 	
rqt.3. Ability to interact with and control a simulated robot.4. Skills to debug and analyze robot behavior in a virtual environment.	
Theoretical Background:	
 Introduction to simulation environments in robotics. Overview of ROS-based tools: Rviz: For 3D visualization of robots, sensor data, and environments. Gazebo: For dynamic robot simulation with realistic physics. rqt: For GUI-based monitoring and control of ROS systems. Understanding how simulations mimic real-world robotic scenarios. 	
Experimentation:	
 Setup the Simulation Environment: Install necessary ROS packages for Rviz, Gazebo, and rqt. Launch the course-provided simulation workspace. 	
 2. Simple Robot Interaction: Use ROS commands to launch a robot model in the simulation. 	

B Tech in Robotics and Automation I	Engineering S Y B Tech (2024 COURSE)
 Move the robot using basic pu Visualize sensor data (e.g., lid GUI Exploration: Utilize rqt plugins to monitor a Create simple visualizations or streams. 	ar or camera) in Rviz. and control robot parameters.
Results and Discussions:	
 Summarize the interaction process and Analyze how the simulation environm Discuss the accuracy of sensor data an simulation. Highlight any challenges faced during to overcome them. 	nent mimics real-world scenarios. nd robot movement in the
Conclusion:	
	on to the course simulation
This exercise provided a hands-on introduction environment. Students learned to interact with gaining practical experience that serves as a simulations and real-world applications. Futu skills to explore advanced robotic behaviors a Experiment No. 3:- Building Robot Enviro	h simulated robots and tools, stepping stone to more complex are activities will build upon these and programming.
environment. Students learned to interact with gaining practical experience that serves as a s simulations and real-world applications. Futu	h simulated robots and tools, stepping stone to more complex are activities will build upon these and programming.
environment. Students learned to interact with gaining practical experience that serves as a s simulations and real-world applications. Futu skills to explore advanced robotic behaviors a Experiment No. 3:- Building Robot Enviro	h simulated robots and tools, stepping stone to more complex are activities will build upon these and programming.
environment. Students learned to interact with gaining practical experience that serves as a s simulations and real-world applications. Futu skills to explore advanced robotic behaviors a Experiment No. 3:- Building Robot Enviro Simulation Tools	h simulated robots and tools, stepping stone to more complex and programming. nment: Using URDF and ROS 2 Hrs.
environment. Students learned to interact with gaining practical experience that serves as a s simulations and real-world applications. Futu skills to explore advanced robotic behaviors a Experiment No. 3:- Building Robot Enviro Simulation Tools Aim: To construct a software representation of a ro Description Format (URDF), configure it thro and enhance the simulation environment by in	h simulated robots and tools, stepping stone to more complex and programming. nment: Using URDF and ROS 2 Hrs.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Outcomes:

- 1. Proficiency in designing robot models using URDF.
- 2. Knowledge of configuring and retrieving robot parameters via the ROS parameter server.
- 3. Skills to add and manipulate objects in a simulation environment.
- 4. Ability to create a realistic and interactive robot simulation.

Theoretical Background:

- Unified Robot Description Format (URDF):
 - XML-based format for defining robot models, including links, joints, and physical properties (mass, inertia, geometry).
 - Hierarchical representation of robot structures.
- ROS Parameter Server:
 - A centralized storage for configuration parameters in ROS.
 - Accessing and modifying robot parameters during runtime.
- Simulation Environment:
 - Adding objects like walls, obstacles, or furniture to mimic realworld environments.
 - Tools like Rviz and Gazebo for visualization and physics-based simulations.

Experimentation:

- 1. URDF Creation:
 - Define a robot model with links, joints, and sensors using URDF.
 - Visualize the model in Rviz to ensure accuracy.

2. Parameter Configuration:

- Set up the ROS parameter server to store and retrieve robotspecific parameters (e.g., joint limits, sensor configurations).
- Test dynamic parameter updates during simulation.

3. Environment Enhancement:

- Add real-world objects (e.g., tables, doors) to the Gazebo simulation environment.
- Test object interactions with the robot, such as navigation around obstacles.

4. Simulation Validation:

- Launch the robot model in the enhanced environment.
- Validate motion control, sensor outputs, and environmental interactions.

Results and Discussions:

B Tech in Robotics and Automation Engineering S Y B Tech (2024 CO	URSE)
• Robot Model: Successfully created and visualized using URDF.	
• Parameter Management: Demonstrated dynamic configuration of	
robot settings using the ROS parameter server.	
• Environment Integration: Real-world objects were added and	
interacted with appropriately in the simulation.	
• Challenges and Solutions: Discussed issues encountered (e.g., model	
inaccuracies or collision detection) and methods for resolving them.	
Conclusion:	
This exercise enabled students to build and simulate a robot environment effectively using URDF and ROS tools. By integrating real-world object representations, students gained practical experience in creating realistic simulations that are essential for testing robotic applications. These skills will support future work in advanced robot design and deployment in complex environments.	
Experiment No. 4:- Autonomous Navigation: Map creation with G Mapping package, autonomously navigate a known map with ROS navigation.	2 Hrs.
To create a map of an environment using the GMapping package and enable a robot to autonomously navigate within the mapped area using the ROS navigation stack.	
Objectives:	
1. To understand the principles of SLAM (Simultaneous Localization and Mapping) for map creation.	
2. To learn the use of the GMapping package for building a map from sensor data.	
3. To configure and utilize the ROS navigation stack for path planning and	
obstacle avoidance.	
4. To achieve autonomous navigation of a robot within a known map.	
5. To evaluate the robot's navigation accuracy and efficiency in a simulated	
or real-world environment.	
Outcomes:	
1. Practical knowledge of creating maps using the GMapping package.	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- 2. Proficiency in configuring the ROS navigation stack for autonomous navigation.
- 3. Ability to implement SLAM techniques and use sensor data effectively.
- 4. Hands-on experience in planning and executing robot navigation tasks.
- 5. Skills to troubleshoot and optimize navigation performance.

Theoretical Background:

- Simultaneous Localization and Mapping (SLAM):
 - An overview of SLAM algorithms and their role in autonomous robotics.
 - Integration of laser scans or sensor data to build accurate maps.

• GMapping Package:

- A ROS package based on the particle filter algorithm for 2D SLAM.
- Key parameters and configurations for effective map building.
- ROS Navigation Stack:
 - Components: Map Server, Costmap, AMCL (Adaptive Monte Carlo Localization), and Path Planner.
 - Principles of path planning, localization, and obstacle avoidance.

Experimentation:

1. Map Creation Using GMapping:

- Setup the GMapping package and configure sensor inputs (e.g., lidar).
- Drive the robot manually or autonomously to collect data and generate a 2D map.
- Save the created map for future navigation tasks.

2. Navigation Stack Configuration:

- Load the generated map into the ROS map server.
- Configure AMCL for localization and costmaps for obstacle avoidance.

3. Autonomous Navigation:

- Set navigation goals within the mapped environment.
- Use the ROS navigation stack to plan and execute paths.
- Observe the robot's behavior in avoiding obstacles and reaching targets.

4. Simulation or Real-world Testing:

• Validate navigation in a simulated Gazebo environment or a physical test area.

Results and Discussions:

D Tash in Debation and Automation Engineering (S.V.D.T. 1. (2024.00)	
B Tech in Robotics and Automation Engineering S Y B Tech (2024 CO	UKSE)
 Map Creation: Successfully generated an accurate 2D map using GMapping. Navigation Performance: The robot autonomously navigated to assigned goals while avoiding obstacles. Analysis: Discussed navigation accuracy, obstacles encountered, and areas for improvement. Challenges: Highlighted challenges such as sensor noise, localization drift, or map inaccuracies, along with potential solutions. 	
Conclusion:	
This exercise provided an in-depth understanding of autonomous navigation using ROS. Students successfully created maps with GMapping and utilized the ROS navigation stack for path planning and execution. These skills are crucial for designing and implementing autonomous robots in real-world applications, such as delivery or inspection tasks. Further exploration could involve optimizing SLAM parameters or integrating 3D mapping for more complex environments.	
Experiment No. 5:- Manipulation: Motion planning, pick and place behaviors using industrial robots with ROS Move It	2 Hrs.
Aim:	
To implement motion planning and pick-and-place operations using industrial robots with the ROS MoveIt framework, enabling precise and efficient robotic manipulation.	
Objectives:	
 To understand the fundamentals of motion planning for robotic manipulators. To learn the configuration and application of the ROS MoveIt framework. To program and simulate pick-and-place tasks for industrial robots. To evaluate the performance of motion planning algorithms in handling dynamic environments. To gain hands-on experience with integrating sensors and actuators for manipulation tasks. 	

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Outcomes:

- 1. Proficiency in using the MoveIt framework for motion planning and control.
- 2. Capability to configure and simulate pick-and-place tasks with industrial robots.
- 3. Understanding of kinematics and path planning for robotic arms.
- 4. Ability to troubleshoot and optimize robotic manipulation processes.
- 5. Practical insights into applying industrial robotic solutions in manufacturing and automation.

Theoretical Background:

• Motion Planning:

- Concepts of inverse kinematics, path planning, and trajectory generation.
- Algorithms such as RRT (Rapidly-Exploring Random Tree) and PRM (Probabilistic Roadmap).

• ROS MoveIt Framework:

- Overview of MoveIt components: Motion Planning, Planning Groups, and Visualization.
- MoveIt Setup Assistant for configuring robotic manipulators.
- Integration with Gazebo for simulation and Rviz for visualization.

• Pick-and-Place Behaviors:

- Workflow for picking objects, planning paths, and placing them in desired locations.
- Use of grippers and end-effectors in manipulation tasks.

Experimentation:

1. **Robot Model Configuration:**

- Load an industrial robot URDF model into the MoveIt Setup Assistant.
- Configure planning groups, end-effectors, and virtual joints.

2. Motion Planning:

- Use the MoveIt motion planning pipeline to plan and execute robot arm movements.
- Visualize motion paths in Rviz and simulate in Gazebo.

3. Pick-and-Place Task Implementation:

- Program pick-and-place tasks using MoveIt APIs.
- Simulate object grasping using a gripper model or virtual sensors.
- Test object placement at specified coordinates.
- 4. Dynamic Environment Handling:

B Tech in Robotics and Automation Engineering S Y B Tech (2024 CC	URSE)
 Introduce obstacles to the environment and evaluate the robot's ability to re-plan paths. 5. Performance Evaluation: Measure precision, speed, and success rate of pick-and-place operations. 	
Results and Discussions:	
 Motion Planning Results: Demonstrated successful path planning and execution for industrial robots. Pick-and-Place Behaviors: Completed object manipulation tasks with high accuracy. Challenges and Solutions: Addressed issues like collision avoidance, sensor noise, and gripper accuracy through parameter tuning and algorithm refinement. Performance Metrics: Evaluated efficiency and adaptability of motion planning in dynamic scenarios. 	
Conclusion: This exercise provided a practical understanding of robotic manipulation using ROS MoveIt. Students successfully implemented motion planning and pick-and-place behaviors, simulating industrial scenarios. These skills are critical for developing advanced robotic systems for automation tasks. Future work may include integrating real-world sensors, improving gripper control, and optimizing algorithms for complex manipulation challenges.	
Experiment No. 6:- Mini Project: Building production line application with industrial robot	2 Hrs.
Aim:	
To design and develop a production line application incorporating an industrial robot to perform automated tasks, improving efficiency, precision, and repeatability in a manufacturing process.	
Objectives:	
• To understand the principles and operations of industrial robots in production lines.	

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- To integrate robotic systems with other production components.
- To automate specific tasks such as material handling, assembly, or packaging.
- To analyze the performance improvements in production efficiency and quality.

Outcomes:

- Successful design and implementation of a production line model using an industrial robot.
- Demonstration of enhanced productivity and reduced manual intervention.
- Ability to troubleshoot and optimize robotic operations within a production line.
- Gained hands-on experience in programming and operating industrial robots.

Theoretical Background:

Industrial robots are automated, programmable machines capable of performing a variety of tasks with high precision and speed. These robots are extensively used in manufacturing processes such as welding, material handling, assembly, and packaging. A typical industrial robot consists of mechanical arms, actuators, sensors, controllers, and software interfaces.

Key Components:

- Mechanical Arm: Provides physical movement and flexibility.
- Actuators: Drive the robot's movements.
- Sensors: Provide environmental feedback.
- **Controller:** Serves as the robot's brain, executing programmed instructions.

Benefits of Industrial Robots:

- Increased production efficiency.
- High precision and consistency.
- Reduction in labor costs.
- Enhanced workplace safety by performing hazardous tasks.

Theoretical Background:

Production lines in industrial settings often require repetitive tasks that are prone to human error. Automating these tasks using industrial robots improves both

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

productivity and consistency. The integration of sensors and controllers allows robots to adapt to dynamic environments and maintain high operational accuracy.

The automation process can be divided into three primary stages:

- 1. **Design:** Determining tasks for automation and selecting appropriate robots.
- 2. **Programming:** Writing code to control robotic movements and interactions.
- 3. **Implementation:** Installing and testing the robot within the production environment.

Experimentation:

Materials Required:

- Industrial robot (e.g., 6-axis robotic arm)
- Conveyor belt system
- Sensors (proximity, vision)
- Programmable Logic Controller (PLC)
- Software tools for robot programming (e.g., RoboDK, ABB RobotStudio)

Procedure:

- 1. **Setup:** Install the robotic arm on the production line alongside the conveyor belt.
- 2. **Task Definition:** Identify specific tasks such as pick-and-place or assembly operations.
- 3. **Programming:** Write and upload control programs to the robot's controller.
- 4. **Sensor Integration:** Connect sensors to provide environmental feedback.
- 5. **Testing:** Run the production line and fine-tune robot parameters.
- 6. **Data Collection:** Measure task completion time, error rate, and productivity.

Results and Discussions:

The industrial robot successfully automated the predefined tasks, leading to a noticeable improvement in task efficiency and precision. Key findings include:

• Efficiency Improvement: Production time per unit decreased by 20%.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

- **B** Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)
- Error Reduction: Manual errors were completely eliminated.
- **Consistency:** The robot maintained consistent quality throughout the experiment.

Challenges Faced:

- Initial calibration and programming required significant effort.
- Sensor integration posed compatibility issues.
- Minor delays due to unforeseen software bugs.

Conclusion:

The experiment demonstrated the feasibility and benefits of using industrial robots in a production line. The project highlighted key advantages such as enhanced efficiency, reduced human intervention, and improved task precision. Future work may focus on further automation enhancements and integration of machine learning for adaptive robotic behavior.

Textbooks:

- 1. "ROS Robotics Projects" by Ramkumar Gandhinathan
- 2. "Learning ROS for Robotics Programming" by Aaron Martinez and Enrique Fernández

References:

- 1. Programming Robots with ROS_ A Practical Introduction to the Robot Operating System (PDFDrive)
- 2. Jason M. O'Kane, A Gentle Introduction to ROS, independently published, ISBN 9781492143239
- 3. C. Fairchild, T. L. Harman, "ROS Robotics by Example" Pakt Publishing, ISBN: 9781785286704
- 4. Lentin Joseph, "Robot Operating System (ROS) for Absolute Beginners", Apress Publication, ISBN:9781484234044.

Experiment wise Measurable students Learning Outcomes:

1 Demonstrate an understanding of fundamental ROS concepts, including topics, services, actions, and nodes.

2 Execute basic communication between nodes and verify system responses in a simulated environment.

3.Develop robot models using URDF and simulate them in ROS-supported simulation tools.

4. Implement autonomous navigation strategies on a pre-mapped environment using ROS navigation packages.

5. Design and execute motion planning for robotic arms using ROS MoveIt.

6. Integrate robot models, motion planning, and navigation in a production line simulation

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) Course Code: HSM2401P01, Course Title: Soft Skills: Workplace and Life Readiness Category: Ability Enhancement Course

Prerequisites: Basic English Grammar Skills **Course Objective:** Purposes of Course are: 5. This course is designed to equip students with essential professional and technical communication skills necessary for success in the modern workplace. 6. Emphasizing both written and verbal communication 7. The course covers a wide range of topics, including effective written communication, active listening and public speaking. Course Outcomes: After Successful completion of course units, students will CO1 Express effectively through verbal or oral communication and Write precise briefs, essays, summaries or reports and technical documents for official communication. CO2 Students will understands ethics and values for being a good professional CO3 Learn to work in a heterogeneous and multidisciplinary teams and handle conflicting situations in corporate world CO4 Students will develop their leadership qualities for being a successful professional CO5 Students will be able to constructively participate in group discussion, meetings, prepare and deliver presentations

Syllabus

Unit I	Self-Introduction & SWOC Analysis	02 Hrs.								
Difference	Difference between hard skills and Soft skills, Introduction of SWOC Analysis,									
Importan	Importance of Soft Skills in corporate setting, Formal / Informal self-introduction,									
goal setti	ng, and how to maintain your attitude towards	s various circumstances.								
Applications of SWOC in domain specific Industry										

Unit IIWriting Skills02Hrs.

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Practicing and understanding various formats of writing skills. Discussion on types of reports, various formats of report writing. Understanding Email etiquette and types of email. Writing emails on different topics. Practicing resume writing and its various formats. Types of application and how to write them.

-								
Unit III	Professionalism & Ethics	03 Hrs.						
Understa	nding ethics and morals, Importance of Pro	fessional Ethics, hindrances due						
to absenc	e of Work ethics, Professional etiquette -	Introductions, with colleagues,						
attire, eve	nts, dinning, telephone, travelling, netique	tte, social media, writing. Stress						
as integral part of life, Identifying signs and sources of stress, Steps to cope with stress								
– open co	mmunication, positive thinking, Belief in o	oneself, ability to handle failure,						
Retrospec	tive thinking for future learning, Organ	nizing skills to enhance time						
managem	ent, Focusing on goals, smart work vs ha	rd work, Prioritizing activities,						
Perils of	procrastination, Daily evaluation of "to	o-do" list. Case studies about						
developm	ent of ethics							
Unit IV	Group Discussion & Personal Interview	03 Hrs.						
Introduct	on to Group Discussion, Difference betwee	n Group Discussion and debate,						
Etiquettes	while conducting Group Discussion, Pro	ofessional Phases to be used in						
Group Di	scussion, handling complexities in GD, Un	derstanding types of Interview,						
Grooming	, and etiquette while giving an Interview,	Understanding Job Description						
and Study	ring Company Profile, Strategies and techni	ques to ace the interview.						
Unit V	Interpersonal & Intrapersonal Skills	03 Hrs.						
Difference	a of interner and interner and chille							
	es of interpersonal and interpersonal skins,	Introduction of team building,						
	on to leadership and types of Leadership, I	e e						
Introduct		dentifying your weakness and						
Introduct focussing	on to leadership and types of Leadership, I	dentifying your weakness and						
Introduct focussing	on to leadership and types of Leadership, I on your strength to become a good leader,	dentifying your weakness and						
Introduct focussing	on to leadership and types of Leadership, I on your strength to become a good leader,	dentifying your weakness and						
Introduct focussing	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation	dentifying your weakness and						
Introduct focussing	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation	dentifying your weakness and						
Introduct focussing Skills, 5P'	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation Practical/ Lab Sessions	dentifying your weakness and Introduction to Presentation						
Introduct focussing Skills, 5P' Lab	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation Practical/ Lab Sessions	dentifying your weakness and Introduction to Presentation Duration						
Introduct focussing Skills, 5P' Lab Session	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation Practical/ Lab Sessions Activities	dentifying your weakness and Introduction to Presentation Duration (Hrs.)						
Introduct focussing Skills, 5P' Lab Session	on to leadership and types of Leadership, I on your strength to become a good leader, s of Presentation, Types of Presentation Practical/ Lab Sessions Activities Speaking Skills- Self Introduction:	dentifying your weakness and Introduction to Presentation Duration (Hrs.)						

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

	ech in Robotics and Automation Engineering	· · · · · · · · · · · · · · · · · · ·
3	How to study job description and	2
	company profile : "Job Detective"	
4	Grooming and image management	2
5	Speaking Skills- JAM Session	2
6	Speaking Skills- Debate session	2
7	Group Discussion	2
8	Group Discussion	2
9	Case study analysis : Problem solving	2
	and critical thinking : "The Problem-	
	Solvers' Challenge"	
10	Presentation Skills	2
11	Presentation Skills	2
12	Personal Interview – Conducting of	2
	mock interview	
13	Personal Interview – Conducting of	2
	mock interview	
Referenc		<u> </u>

- 1. Indrajit Bhattacharya, "An Approach to Communication Skills", Dhanpat Rai.
- 2. Simon Sweeney, "English for Business Communication", Cambridge University Press.
- 3. Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press.
- 4. Atkinson and Hilgard's, "Introduction to Psychology", 14th Edition.
- 5. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts.
- 6. R. Gajendra Singh Chauhan and Sangeeta Sharma, "Soft Skills-An integrated approach to maximize personality", Wiley Publication, ISBN: 987-81-265-5639-7

MOOC / NPTEL Courses:

- 1. NPTEL Course "Developing Soft skills & Personality" https://nptel.ac.in/courses/109/104/109104107/
- 2. NPTEL Course "Communication Skills" https://nptel.ac.in/courses/109/104/109104030/
- 3. NPTEL Course "Effective Writing" https://nptel.ac.in/courses/109/107/109107172/

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

4. NPTEL Course "Interpersonal Skills" https://nptel.ac.in/courses/109/107/109107155/

Marking Scheme for Evaluation

	Marking Scheme for ISE (100)									
No	Component	Marks								
1	Assignment	30								
	6 Assignments*5 Marks each = 30Marks									
2	Quiz - Pre & Post Diagnostic Test-15 Marks	30								
	Quiz on Unit 1 & 2 -15 Marks									
3	Micro Project:	30								
	Content creation- 15 Marks									
	Presentation of the Report-15 Marks									
4	Participation in Teaching Learning Process	10								
	Total Marks:	100								

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	0	0	0	0	0	0	1	3	0	2
CO2	0	2	0	0	0	0	3	1	0	0	2
CO3	0	0	2	0	0	1	3	3	1	3	2
CO4	0	0	0	2	0	0	3	1	0	2	2
CO5	0	0	0	0	2	0	2	2	1	1	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)Course Title: Entrepreneurship/ Economics and Management 2Course Code: RA124EEM402

Prerequisites:								
Course Objectives:								
• To introduce students to technology commercialization and the startup ecosystem.								
• To explore digital transformation, smart manufacturing, and cybersecurity in robotics and automation.								
• To understand the impact of human-machine interaction and workforce management								
in automated industries.								
Course Outcomes: After successful completion of the course the student will be able to								
CO1 Analyze the process of technology commercialization and the startup ecosystem.								
CO2 Understand digital transformation, Industry 4.0, and cybersecurity in automation.								
CO3 Evaluate the impact of automation on employment, team leadership, and workplace								
ethics.								
G11 - h								

Syllabus

Unit I	Technology Commercialization & Startup Ecosystem	9 hrs						
Technology	Technology Transfer & Commercialization: Converting research innovations into market-							
ready produ	cts.							
Incubation &	& Accelerator Programs: Support systems for tech startups, case studies of	f robotics						
incubators.								
Entrepreneu	rial Challenges in Automation: Market adaptation, funding hurdles, s	scaling a						
robotics bus	iness.							
Unit II	Digital Transformation & Smart Manufacturing	9 hrs						
IoT & Indus	IoT & Industry 4.0 in Manufacturing: Smart factories, digital twins, predictive maintenance.							
AT Q Ma	aline Learning in Drainers Desisions. Date driven desision real	fring from						

AI & Machine Learning in Business Decisions: Data-driven decision-making for entrepreneurs.

Cybersecurity & Data Protection: Security risks in automated industries, blockchain applications.

Unit III Human-Machine Interaction & Workforce Management

8 hrs

Impact of Automation on Employment: Workforce shifts, upskilling, job creation vs. displacement. Leadership & Team Management in Tech Startups: Building and managing high-performing teams. Workplace Ethics & Safety in Pobotics Industry: Ethical AL worker safety in human rob

Workplace Ethics & Safety in Robotics Industry: Ethical AI, worker safety in human-robot collaboration.

Reference Books

- 6. Peter F. Drucker, "Innovation and Entrepreneurship," Harper Business.
- 7. B.J. Harrison, "Engineering Economy," Pearson.
- 8. Philip Kotler, "Marketing Management," Pearson Education.
- 9. Charles Fine, "Clockspeed: Winning Industry Control in the Age of Temporary Advantage," Basic Books.
- 10. Michael E. Porter, "Competitive Strategy," Free Press.

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) **Scheme for Examination**

Component	Level	Unit I	Unit II	Unit III	Total	Pass
	Faculty	8	8	9	25	
CCA	Dementaria	UT1		UT2	25	20
	Department	8	9	8	25	
ESE	Institute	17	17	18	50	20

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	1	-	2	-	1	2	-	-	2	-	-
CO2	-	-	2	-	2	-	1	3	-	-	2	-	1	2
CO3	2	3	1	2	2	-	3	-	2	2	-	1	-	3

3: High, 2: Moderate, 1: Low, 0/-: No Mapping

r			mation Engine	ering S			OURS	E)
Course C	0.	VEC-2	Development	2	Course	e Code		
Course		sustainable ng Scheme	Development ·	· <u>2</u>	Evalu	ation Sch	eme	
	Ttacini	ig beneme				y Marks	Prac	ctical arks
L	Т	Р	Cr	Exam	Max	Min Marks for Pass	Max	Min for Pass
2	0	0	2					
	Tota	l Hours		CCA	100	40	-	-
26	0	0	Total hrs: 26					
Prerequisit	tes:							
None								
Subjects In	ncluded:							
Universal I	Human Valu	es (UHV) 3 u	inits					
Constitutio	on of India	1 1	unit					
Corporate	Laws	1 1	unit					
Course Ob	jectives: (M	lin 3)						
Understan values in st		Human Va	lues (UHV) – I	Develop e	thical, m	oral, and p	rofessio	onal
	V in Person sible behavior		essional Life – I	Explore h	uman rel	lationships	, harmo	ony,
-	thical Decis ion-making	0	Skills – Analyz	ze real-lif	e scenari	los and cas	e studie	s to
-		Rights and I	Duties – Unders e.	tand fund	damental	rights, dir	ective	
Understan and corpor	-	e Laws – Ex	plore the regula	tory fran	nework g	overning b	ousiness	es
Course Ou	tcomes: Aft	er successfu	l completion of	f the cou	rse the s	tudent wil	l be ab	le to
CO1 DEI	FINE the fun	damental co	ncepts of Unive	ersal Hum	nan Value	es (UHV).		
CO2 EXI	PLAIN the s	ignificance c	of ethical values	and hum	an relation	onships in	society.	
UU.5	ALYZE ethi exts.	cal dilemmas	s and decision-n	naking fra	amework	as in profes	sional	

	B Tech in Robotics and Automation Engineering S Y B Tech (2024 COURSE)								
CC)4	DESCRIBE the fundamental rights, duties, and governance structure of India.							
CC)5	UNDERSTAND key aspects of corporate laws and ethical business practices.							

Syllabus

Unit I	Introduction to Universal Human Values (UHV)					
	Meaning and importance of UHV, ethical values, role in personal and professional life, self-exploration.					
Unit II	Human Relationships & Harmony	6 hrs				
	Role of relationships in family, society, and workplace; conflict resolution; social responsibility; sustainability in human interactions.					
Unit III	Ethical Decision-Making					
	Case studies on ethical dilemmas, corporate ethics, moral reasoning, frameworks for ethical decision-making.					
Unit IV	Constitution of India	4 hrs				
	Fundamental rights and duties, directive principles, governance structure, significance of constitutional amendments, case laws.					
Unit V	Corporate Laws & Business Ethics					
	Overview of business laws, corporate governance, ethical leadership, corporate social responsibility (CSR), impact of regulations on industries.					

Scheme for Examination

Component	Parameters	Marks	Total	Pass
CCA	Viva Voce for assessment of Understanding	20		
	Involvement, Participation, and Engagement	10	50	20
	Quality of Submission of Report	10		
	Attendance	10		
End	Performance (Internal)	25	50	20
Evaluation	Oral Examination (Internal)	25	50	20

CCA: Continuous Comprehensive Assessment (CCA)

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO5	3	3	3	3	-	-	-	-	-	-	-	-	3	3

3: High, 2: Moderate, 1: Low, 0: No Mapping

F	B Tecl	ı in R	oboti	cs and	l Auto	matio	n En	gineer	ring S	SYB	Гесh (2024	4 C(OURSI	E)
Title o										L	Т		Р		redit
Cours	e Cod	le: NC	MC4							0	0	2		2	
Cours	Course Pre-Requisite:C++ / Python, Fundamental knowledge of industrial robotics and														
autom		-			·					C					
Cours	e Des	cripti	on: Tl	nis cou	urse pi	ovide	s hanc	ls-on e	experi	ence w	ith inc	lustr	ial r	obotics	
simula	tion a	nd pro	ogram	ming.	Stude	nts wi	ll lear	n to ai	nalyze	and in	plem	ent f	orwa	ard and	l
inverse	e kine	matics	s, traje	ectory	planni	ing, vi	sion-ł	based a	autom	ation, a	nd of	fline	prog	gramm	ing
using t	tools l	ike Ro	oboAn	alyzei	r, Rob	oDK,	MAT	LAB,	and O	penCV	. The	cour	se b	ridges	
theore	tical c	oncep	ts with	h prac	tical a	pplica	tions,	enabl	ing stu	idents t	o wor	k on	real	l-world	l
robotic	c auto	matio	n proje	ects.											
Cours	e Obj	ective	es:												
1. To I	Introd	uce st	udent	s with	the fu	Indam	ental o	concep	ots and	l princi	ples o	f rot	ootic	autom	ation.
								-		c modu	-				
	-									otic app		ons.			
4. To a															
Cours						t	-								
CO	Aft	er the	comp	oletion	n of th	e coui	rse th	e stud	ent sh	ould b	e B	oom	ı's C	ognitiv	/e
	able		-								-	vel	De	scripto	r
CO1	Apr	oly for	ward	and in	verse	kinem	atics t	to indu	ıstrial	robots	3	;		ply	
		•			sing si								1	1 2	
CO2									dustri	al robo	t 4		An	alyze	
								RL, o						ur j 20	
CO3								n and			3		Ap	ply	
			tic mo		•••••				8-				p	P-J	
CO4	_				roboti	c traie	ctorie	s for i	ndustr	ial task	s 5	i	Ev	aluate	
			oDK.		100001	e uuje	etone	5 101 1	naasti	iui tubh	.5 -		20	uruute	
C05		0		robot	nrogr	ams a	nd gei	nerate	execu	table	6	5	Cre	eate	
		-			plicati			lierate	011000	uore			011	Juic	
CO-P				iui up	piicuti	0115.									
		phile	•												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	P	SO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	1		2	3
					_										
CO	3	2	-	2	2	1	-	-	1	-	1	1		-	-
1															
CO	3	-	3	-	2	-	1	2	-	3	-	-		2	-
2															
CO	2	3	3	3	2	2	3		2	2	2	-		-	2
3		ļ					ļ			ļ					
CO	3	-	3	3	-	2	-	3	-	2	2	-		-	3
4															
CO	3	2	-	3	2		3	3	-	-	3	-		1	-
5															

B Tech in Robotics and Aut	comation Engineering S Y B Tech (2024	COURSE)
Assessments :	contaction Engineering 5 T D Teen (2024	
Teacher Assessment:		
Based on Continuous Comprehensi	ive Assessment (CCA)	
Assessment	Marks	
CCA	50	
CCA: Assessment is based on oral		
CCA. Assessment is based on oral	examination	
Course Contents:		
Forward Kinematics of an Indus	trial Robot	2 Hrs.
Objective:		2 111 5.
	the forward kinematics of a robotic arm	
using RoboAnalyzer.	the forward kinematics of a foootic arm	
Tools Required:		
RoboAnalyzer software		
 MATLAB or equivalent sin 	nulation tool	
• MATLAB of equivalent shi Procedure:		
	odel (e.g., KUKA, ABB, FANUC).	
 Select an industrial robot in Identify and define the DH 		
	tics equations using RoboAnalyzer.	
	nent to visualize the transformation of	
coordinate frames.	hent to visualize the transformation of	
	sults with theoretical calculations.	
Expected Outcome:	and with theoretical calculations.	
-	nd validate the forward kinematics of an	
industrial robot	in valuate the forward kinematics of an	
Experiment No. 2:- Inverse Kine	matics of an Industrial Robot	2 Hrs.
Experiment 100. 2 mverse Kine	mattes of an industrial Robot	2 1115.
Objective:		
Objective.		
To compute and validate the invers	se kinematics of a robotic arm using	
MATLAB or an open-source tool.	se kinematies of a fobotie and using	
WITTEND of an open-source tool.		
Tools Required:		
room negunicu.		
MATLAB / Open-source software	(e.g., Python with sympy, OpenRAVE)	
WINTEND / Open-source software	(e.g., 1 yulon with sympy, Openity (L)	
Procedure:		
i i occuui c.		
1. Define the robotic arm's DF	I parameters and forward kinematics.	
	methods to solve inverse kinematics.	
-	erse kinematics using MATLAB or an	
equivalent tool.	erse kinematies using WAILAD of all	
equivalent tool.		

B Tech in Robotics and Automation Engineering S Y B Tech (2024 C	COURSE)
4. Visualize the obtained joint configurations and compare them with expected results.	
Expected Outcome:	
Students will be able to understand and solve the inverse kinematics of a robot.	
Experiment No. 3:- Robot Programming using RAPID / KRL / MELFA	2 Hrs.
Objective:	
To program an industrial robot for a pick-and-place task using proprietary robot programming languages.	
Tools Required:	
RoboDK or a real robot controller (ABB, KUKA, Mitsubishi, etc.)	
Procedure:	
 Choose a robot model from RoboDK's library (e.g., ABB with RAPID, KUKA with KRL). Define tool parameters and workpieces. Write and execute a simple pick-and-place program using the chosen language. Test and optimize the program in simulation before deploying it on a real robot. 	
Expected Outcome:	
Students will be able to create and execute basic industrial robot programs.	
Experiment No. 4:- Robot Vision using OpenCV and MATLAB	2 Hrs.
Objective:	
To implement a basic computer vision algorithm for object detection in a robotic application.	
Tools Required:	
 OpenCV (Python) / MATLAB Image Processing Toolbox Camera (real or simulated) 	

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Procedure:

e:
pture images of objects using a camera or simulated input. ocess images using OpenCV / MATLAB to detect objects based on or, shape, or edge detection.
egrate the vision system with a robotic system for object picking. st the algorithm in a real-time scenario.
Outcome:
will gain hands-on experience in computer vision applications for
ent No. 5:- Trajectory Planning and Simulation in RoboDK 2Hrs.
:
and simulate a robotic trajectory for a welding application using
uired:
oftware
e:
port a CAD model of a workpiece into RoboDK. lect an industrial robot and define tool parameters. eate a trajectory for a welding operation (Cartesian motion). timize path planning to avoid collisions and reduce movement time. nulate and analyze the trajectory execution.
Outcome:
vill be able to create and simulate robot trajectories for industrial
S:
aig, J. J. – Introduction to Robotics: Mechanics and Control (Pearson, 4th Edition) P. Groover – Industrial Robotics: Technology, Programming, and Applications (cGraw-Hill)
K. Saha – Introduction to Robotics (McGraw-Hill) K. Mittal & I.J. Nagrath – Robotics and Control (McGraw-Hill)
will gain hands-on experience in computer vision applications for ent No. 5:- Trajectory Planning and Simulation in RoboDK 2Hrs. : and simulate a robotic trajectory for a welding application using puired: software e: port a CAD model of a workpiece into RoboDK. lect an industrial robot and define tool parameters. eate a trajectory for a welding operation (Cartesian motion). timize path planning to avoid collisions and reduce movement time. nulate and analyze the trajectory execution. Outcome: vill be able to create and simulate robot trajectories for industrial 1s. s: aig, J. J. – Introduction to Robotics: Mechanics and Control (Pearson, 4th Edition) P. Groover – Industrial Robotics: Technology, Programming, and Applications cGraw-Hill) K. Saha – Introduction to Robotics (McGraw-Hill)

References:

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

- 1. Peter Corke Robotics, Vision, and Control: Fundamental Algorithms in MATLAB (Springer)
- 2. Richard D. Klafter, Thomas A. Chmielewski, and Michael Negin Robotic Engineering: An Integrated Approach (Prentice-Hall)
- 3. Mark Spong, Seth Hutchinson, and M. Vidyasagar Robot Modeling and Control (Wiley)
- 4. RoboDK Documentation and Tutorials
- 5. RoboAnalyzer User Guide and Tutorials

Experiment wise Measurable students Learning Outcomes:

- 1. Calculate and validate forward kinematics using DH parameters and simulation.
- 2. Compute and implement inverse kinematics using analytical and numerical methods.
- 3. Write, debug, and execute industrial robot programs for automation tasks.
- 4. Implement object detection and integrate vision-based automation using OpenCV/MATLAB..
- 5. Design and optimize robot joint trajectories for industrial applications using RoboDK.

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE) Course Code: NCMC4, Course Title: Professional and Technical Communication Category: Non Credit Mandatory Course

Prerequisites: Basic English Grammar Skills

Course Objective: Purposes of Course are:

- 8. This course is designed to equip students with essential professional and technical communication skills necessary for success in the modern workplace.
- 9. Emphasizing both written and verbal communication
- 10. The course covers a wide range of topics, including effective written communication, active listening and public speaking.

11. Develop strong aptitude & problem solving to clear company selection tests

Course Outcomes: After Successful completion of course units, students will

CO1 Analyse and evaluate spoken information critically for understanding the context	
credibility of the source.	and
CO2 Demonstrate effective interpersonal communication skills for harmonious and productive interactions.	
CO3 Articulate strategies for clear and coherent writing skills for personal & profession communication needs.	nal
CO4 Develop skills for effective and authentic non-verbal communication to ace the professional communication needs.	
CO5 Solve complex aptitude problems efficiently, improving selection test performance	e.

Syllabus

Unit I	Development of Listening and Speaking Skills	04 Hrs.			
Introduction	Introduction to Listening skills, Barriers to Listening skills, active Listening techniques,				
Listening fo	r main ideas and details, Note taking strategies. Introduction to Speaki	ng skills,			
Building vo	cabulary and fluency, Conversational Skills, Public speaking fundamenta	ls. Speed			

and Fluency, Removing MTI.

Unit II	Development of Writing and Reading Skills				
Introduction	to Effective Written Communication, fundamentals of grammar and pur	ctuation,			
Paragraph S	Structure, Essay writing, Report writing, Formal letter writing. Import	rtance of			
Reading, Co	omprehension and solving case studies, Synthesis writing				

Unit III	Fundamentals of Technical Communication	03 Hrs.

An Autonomous Institute from AY 2024-25, Affiliated to Savitribai Phule Pune University, Pune

B Tech in Robotics and Automation Engineering | **S** Y **B** Tech (2024 COURSE)

What is communication? Importance of communication, Communication Types – Verbal, Nonverbal, Why is non-verbal communication important? Making eye contact (or lack thereof), Shaking hands, -Crossing or uncrossing legs, Folding or unfolding arms, Fidgeting, Eye contact, Smiling or frowning, Communication styles

Unit IV Business Communication

03 Hrs.

10 Hrs.

Business communication theory, Email Etiquette, Digital Communication, Presentation Skills, Ethics in Business Communication, Kinesics and Pitch modulation

Unit V **Quantitative Aptitude**

- 2. Linear Equations, Quadratic Equations
- **3.** Profit and Loss
- 4. Simple Interest and Compound Interest
- 5. Time, Speed, and Distance Basic
- 6. Race & Game & Problem on Trains
- 7. Time and Work

Unit VI Verbal Ability

1. Critical Reasoning & Analogies

2. Sentence Correction - Intermediate and Advanced

Reference Books

- Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson),2011, ISBN - 8131799905, 9788131799901
- 12. Communication Skills for Technical Students by T.M. Farhathullah (Orient Longman)2002, ISBN 9788125022473
- 13. Written Communication in English by Saran Freeman (Orient Longman) 1977, 8125004262
- 14. Essential English Grammar (Elementary & Intermediate) Raymond Murphy (CUP), 1990, ISBN 10-8175960299
- 15. Communication for Business: A Practical Approach by Shirley Tailor (Longman),2005, ISBN 9780273687658
- 16. Developing Communication Skills by Krishna Mohan & Meera Banerji (Macmillan),2009, ISBN 9780230638433
- 17. Business Correspondence and Report Writing, R. C. Sharma & Krishna Mohan (Tata McGraw Hill,2017, ISBN 9789390113002
- 18. Technical communication: Principles and practice, Raman, Minakshi, and Sangita Sharma. 3rd ed. Oxford University Press, 2015, ISBN 978-0199457496

19. <u>https://ielts.org</u>

20. NPTEL Course-Business English Communication IIT Madras

03 Hrs.

B Tech in Robotics and Automation Engineering | S Y B Tech (2024 COURSE)

Link https://youtu.be/GwF4ypDSr-A

11 NPTEL Course- Introduction to Effective Communication Link https://archive.nptel.ac.in/courses/109/104/109104030/